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FOREWORD BY SUSTAINABLE AVIATION’S ADVISORY BOARD 

The climate policy landscape has seen dramatic changes in 2016. The Paris Agreement was ratified 

and entered into force on 4th November, and the International Civil Aviation Organization (ICAO) 

agreed an international deal to tackle growth in carbon emissions beyond 2020 using market-based 

measures. Closer to home, we have the public voting to leave the European Union and the 

Government supporting the Airports Commission’s recommendation for an additional runway at 

Heathrow.  Since 1990 we have also seen UK aviation emissions rise both in absolute terms and as a 

percentage of UK emissions as other sectors decarbonise. Aviation now accounts for over 7% of UK 

CO2 emissions.  Given these seismic shifts, the 2016 CO2 Road-Map produced by Sustainable Aviation 

(SA) could not be timelier. 

The CO2 Road-Map is the flagship report of SA. This report updates its 2012 Road-Map which set out 

a suggested pathway for UK aviation out to 2050. Despite an expected 150% rise in air traffic 

between 2010 and 2050, the 2012 Road-Map showed a scenario for how a combination of changes to 

operations, to the fleet and the introduction of alternative fuels could lead to limited emission 

increase. The Road-Map also suggested market-based measures could be used to halve net emissions 

by 2050.  

In this new Road-Map the proposed future pathway and the contribution from the different wedges 

are largely unchanged. However, the Road-Map does an excellent job of examining each of these 

wedges and their impact on UK aviation emissions. This new evaluation accounts for increased 

runway capacity. It also considers increased knowledge on sustainable fuels and future fleets.  

The SA Advisory Board welcomes this new Road-Map and we acknowledge the efforts that all parts of 

the industry have made to decarbonise both immediately and going forward. We think the Road-Map 

sets a good level of ambition that is broadly in line with the UK Committee on Climate Change 

recommendations. It also goes about half way towards the long-term climate goals of balancing 

sources and sinks of carbon in the second half of this century articulated in the Paris agreement, when 

market based measures are accounted for.  

Going forward we would encourage SA to identify the key practical interventions that would support 

the UK aviation industry both to implement this level of ambition and to grow the level of ambition 

across the industry. Lastly, as stated in the report, CO2 should not be considered in isolation, as other 

aviation emissions which also have a warming effect need to be accounted for. We look forward to a 

continued close working relationship with this important UK industry.  

 

The SA Advisory Board 

The Sustainable Aviation Advisory Board works with Sustainable Aviation to provide independent 

advice and feedback. It provides rigorous challenge to the SA Council in order to enable it to reach its 

cleaner, quieter, smarter goals effectively and efficiently.  
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EXECUTIVE SUMMARY 

This CO2 Road-Map, like its predecessor published in 2012, demonstrates the potential for the UK to 

accommodate significant aviation growth to 2050 without a substantial increase in CO2 emissions, 

through a better than doubling of carbon efficiency. 

 

 

UK aviation can accommodate significant growth to 2050 without a substantial 

increase in CO2 emissions. We also illustrate the potential reduction of net CO2 

emissions through internationally agreed market-based measures. 

Key findings 

 Through the adoption of newer, more efficient aircraft, sustainable fuels and better air traffic 

management and operational procedures, the aviation industry in the UK will be able to 

accommodate significant growth through to 2050, including the effect of additional runway 

capacity in the South East of England, without a substantial increase in CO2 emissions. 

 By 2050, UK aviation’s CO2 emissions are expected to be broadly in line with levels recommended 

by the Committee on Climate Change. Further improvements in the industry’s carbon intensity can 

be expected post-2050. 

 The historic agreement for a global market based measure (MBM) at this year’s ICAO Assembly 

will support the global aviation industry’s drive for carbon neutral growth from 2020. It is also a 

major step towards the global industry’s longer term goal of halving its net CO2 emissions by 2050 

versus 2005 levels. The industry’s focus is now, with Government support, to ensure the 

successful implementation of this global measure from 2020. Our Road-Map shows the level of 

contribution required from MBMs, additional to the within-sector improvements listed above, if UK 

aviation is also to halve its net CO2 emissions relative to 2005 levels whilst accommodating a 

more than doubling of demand over the same period. 
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Improvements to our Road-Map since 2012 

 Our demand-growth assumptions now take account of additional runway capacity in the South-

East of England, using forecasts from the Airports Commission. 

 Recent international agreements concerning new-aircraft fuel-efficiency and market based 

measures for aviation have been taken into account. 

 Our assessment of the potential for fleet fuel-efficiency improvements has been refined, taking 

more accurate account of the existing fleet and including recently-announced new aircraft types. 

 Significant advances in sustainable aviation fuels have been taken into account. 

 We have refined our analysis of near-term air traffic management efficiency improvements related 

to the target set by NATS, the UK’s air navigation service provider. 

Where Government can help 

Recognising aviation’s benefits to the economy, to employment and to connectivity, the UK 

Government has provided resource and assistance to enable a vibrant aviation and aerospace 

manufacturing industry in the UK. This report demonstrates how that support is yielding significant 

dividends. 

However, delivery of the full range of improvement initiatives set out in this document will require not 

only continued focus from the industry itself but also appropriate levels of ongoing support from 

Government - on both Research and Development (R&D) and policy - in the following specific areas: 

 Airspace Reform: The Government should continue to support airspace modernisation in the UK, 

and maintain momentum towards improved air traffic management (ATM) collaboration across 

Europe. 

 Supporting Research and Development (R&D): Just as the fuel-efficiency of new engines and 

aircraft today is the result of past investment in R&D, so the improved fuel-efficiency and 

commercial competitiveness of future engines and aircraft will hinge on R&D investment made 

today and in the future. In the coming years, the Government must ensure that access by UK 

aerospace industry to ongoing funding for high-value collaborative R&D remains in place. 

 Sustainable Fuel Strategy: We welcome the UK Government's recent consultation on the 

inclusion of Sustainable Aviation Fuels (SAF) in future policy for renewable transport fuels. We 

urge the Government to introduce binding legislation and to provide clear long-term policy as soon 

as possible to enable the UK to realise the opportunities for UK sustainable fuels production.  The 

UK should develop a new vision and strategy for SAF, to ensure the development of UK expertise 

and innovation, to enable the UK to benefit from global opportunities in these emerging 

technologies and to deliver on the jobs and growth identified in our 2014 Sustainable Fuels Road-

Map. 

 Market Based Measures (MBMs): We welcome the role played by the UK Government in 

negotiations towards ICAO’s Global MBMs agreement, which supports as far as 2035 the global 

aviation industry’s carbon neutral growth ambition. Government should now focus on 

implementation details including avoiding duplication of coverage with regional schemes. 

Government should also start the process towards the global mechanism for 2035 onwards, which 

will be essential in supporting the global aviation industry’s commitment to reduce net aviation 

CO2 emissions by 50% by 2050, relative to 2005 levels, while increasing capacity in support of 

economic growth. 
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Aviation in the UK 

 UK aviation, comprising domestic and international flights departing from UK airports, 

accounted for some 7.4% of UK CO2 emissions in 2014. 

 The UK aviation sector has a turnover of over £60 billion, contributes over £52 billion to our 

GDP
1
 and almost £9 billion in taxes, and directly or indirectly supports almost one million UK 

jobs. 

 Our aerospace manufacturing sector generates annual exports of £26 billion and has a global 

market opportunity of £3.5 trillion over the next twenty years. 

As this document shows, the UK aviation industry is working hard to enhance its economic benefits 

while managing its carbon footprint through a better than doubling of carbon efficiency between 

2010 and 2050. 

 

Sustainable Aviation members’ progress 

 Airspace Management – by introducing more efficient aircraft routes and a range of other 

measures, NATS has made strong progress towards a target of reducing CO2 from aircraft 

under their control by 10% by 2020 relative to 2006 levels. Improvements made so far are 

saving more than a million tonnes of CO2 per year. 

 Airlines & Airports 

o Airline members are investing billions of pounds in significant upgrades to their fleets, 

adopting the latest, most fuel-efficient aircraft. Since 2005, UK airlines have brought in 

470 new aircraft.
 
Alongside reductions in emissions, these aircraft offer further benefits 

such as lower noise levels. Between 2005 and 2015, Sustainable Aviation’s member 

airlines have improved their fuel efficiency by almost 12%, equivalent to a saving of 20 

million tonnes of CO2. 

o Airline and airport members are identifying and adopting a wide range of improved 

operational practices such as reducing the use of aircraft APUs, and taxiing on a 

reduced number of engines. This complements broader on-airport work to reduce 

carbon emissions from energy use in buildings and by vehicles. Between 2010 and 

2012, the combined carbon footprint of the UK’s 18 biggest airports – representing 

95% of passengers using UK airports – reduced by 3%, whilst passenger numbers 

increased by 5%. 

 Manufacturers - Aerospace manufacturers, having created the latest generation of efficient 

aircraft, are already investing heavily in the cutting edge technology that will ensure the next 

generation of aircraft and engines will be able to reduce CO2 emissions further. 

 Fuels – Aerospace manufacturers, airlines and fuel companies have worked collaboratively to 

approve new fuels that can be manufactured from sustainable sources. Additionally, SA 

members are actively involved in developing new supply chains. 

 Market based measures - Between 2012 and 2015, 6 million tonnes of CO2 emissions 

reductions were made by UK airlines through the EU Emissions Trading System (ETS). 

                                                      
1
  including direct, indirect and induced economic benefits 
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1  Introduction and Context 

1.1 What Is the CO2 Road-Map? 

Put simply, this document (like its predecessor [SA, 2012]) sets out Sustainable Aviation’s latest view 

of the likely trajectory of UK aviation’s carbon dioxide (CO2) emissions to 2050. It takes into account 

expected growth in UK aviation activity in the coming decades and explores the likely impact of a 

number of CO2 mitigation measures. It is based on the latest information available to us at the time of 

writing. 

The Road-Map’s purpose is to inform debate, to highlight the efforts being taken by the aviation 

industry to reduce its carbon intensity, to assess the likely effectiveness of those efforts in the specific 

context of UK aviation, and to identify areas where Government can help. 

This document does not represent a target set by Sustainable Aviation for the industry to deliver, and 

should not be viewed as a promise or commitment. It does not warrant that UK aviation emissions will 

follow a particular path.  

However, neither is this document an aspirational statement. Wherever possible we have based our 

position on quantitative analysis of hard data. In some areas we have needed to exercise informed 

judgement, and in the text we make clear where this is the case. 

As with our previous CO2 Road-Maps, we interpret “UK aviation” to mean “flights which depart from 

UK airports”. This is consistent with the accounting convention used by the UK to assess emissions 

from UK aviation. Our use of this interpretation is motivated by the need for consistency with published 

figures and does not imply support for or agreement with the corresponding accounting practice.  

Besides carbon dioxide, emissions from aviation also include oxides of nitrogen (NOx), water vapour, 

particulates, carbon monoxide, unburned hydrocarbons, soot and oxides of sulphur (SOx). The climate 

impact of many of these is discussed in a separate paper [SA, 2014a]. This Road-Map focuses purely 

on CO2. 

1.2 Sustainable Aviation 

Launched in 2005, Sustainable Aviation (SA) brings together the main players from UK airlines, 

airports, aerospace manufacturers and air navigation service providers to set out a collective long term 

strategy to ensure a sustainable future for UK aviation. 

We are focused on finding collaborative ways of becoming cleaner, quieter and smarter to enable the 

more sustainable development of our industry and the economy. We continue to promote the 

principles of our strategy, both within the UK and internationally. 

SA has set a range of goals and commitments covering climate change, local air quality and noise to 

deliver a sustainable future for our industry
2
. We regularly report on our progress towards these 

objectives, monitoring and tracking the practical cooperative work being undertaken by SA’s 

signatories. Our Progress Reports can be found at www.sustainableaviation.co.uk. 

1.3 UK Aviation’s Social and Economic Value 

[SA, 2016]
3
 sets out the importance to the UK of aviation and its various sub-sectors, both from an 

economic standpoint and a social standpoint. The UK aviation sector has a turnover of over £60 

                                                      
2
  SA’s goals can be found at http://www.sustainableaviation.co.uk/our-goals/ 

3
  See references at the end of this document 
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billion, contributes over £52 billion
4
 to our GDP, and directly or indirectly supports almost one million 

UK jobs. Our aerospace manufacturing sector generates annual exports of £26 billion and has a 

global market opportunity of £3.5 trillion over the next twenty years. 

As this document shows, the aviation industry is working hard to enable these benefits to continue into 

the future while substantially reducing CO2 emissions per unit of delivered benefit. 

1.4 Aviation and the Environment 

The aviation industry takes extremely seriously its responsibility to reduce its environmental impact, as 

its track record illustrates. Over the last half-century, fuel-burn per passenger-kilometre has been 

reduced by some 70 percent against a backdrop of progressively tightening regulations for noise and 

NOx emissions. The industry remains resolute in its drive to reduce its emissions intensity even further, 

as demonstrated not only by the commitments of aircraft operators to refreshing their fleets with 

newer, more efficient aircraft, but also by significant research and development investment within the 

aerospace design and manufacturing sector to ensure that future generations of engines and aircraft 

are even more efficient.  

However, aviation’s social and economic contribution to society is such that underlying demand for air 

travel continues to rise, placing upward pressure on emissions. Several years ago, the global aviation 

industry agreed an overall strategy for managing its CO2 emissions [IATA, 2009]. 

Our UK-specific Road-Map brings together analysis from the various sectors of the UK industry, 

together with a demand-growth projection based on forecasts from the UK’s Airports Commission, to 

set out Sustainable Aviation’s view of the likely trajectory of CO2 emissions from UK aviation over the 

period to 2050. 

1.5 UK Aviation in the National and International Context 

CO2 emissions from global aviation account for some 2% of all human-attributable CO2 emissions
5
. 

Furthermore, CO2 emissions from UK aviation
6
 currently correspond to around one twentieth of CO2 

emissions from aviation worldwide
7
. Whilst forecast growth in UK aviation activity to 2050 will average 

up to 2.4% per annum
8
, global aviation activity growth rates are expected to be considerably higher 

due to the rapid development of emerging markets in Asia and elsewhere
9,10

. As a result, the 

proportion of global aviation’s CO2 emissions attributable to the UK is likely to diminish substantially 

over time. The most compelling opportunity for the UK to exert an influence over CO2 emissions from 

aviation is therefore not by heavily constraining demand for UK aviation, but rather through 1) 

investment in advanced technologies
11

 which can be deployed globally, earning export revenues for 

the UK while contributing to a more environmentally efficient industry world-wide, and 2) continuing to 

engage at the international level to ensure that decarbonisation happens in the most cost effective 

way possible, through the use of market-based measures. 

                                                      
4
  including direct, indirect and induced economic benefits 

5
  Source: http://www.atag.org/facts-and-figures.html, viewed 3

rd
 Oct 2016 

6
  Our interpretation of this phrase is set out in section 1.1 

7
  Source: SA analysis of data from [CAA], [NAEI], and http://www.atag.org/facts-and-figures.html, viewed 3

rd
 Oct 2016 

8
  Demand growth is discussed in detail in section 2 

9
  See page 7 of http://www.airbus.com/company/market/global-market-forecast-2016-

2035/?eID=maglisting_push&tx_maglisting_pi1%5BdocID%5D=109228 
10

  See page 5 of http://www.boeing.com/resources/boeingdotcom/commercial/about-our-

market/assets/downloads/cmo_print_2016_final_v6.pdf 
11

  This would include not only engine and aircraft technologies, but also technologies related to sustainable aviation fuels and 

to air-traffic management. 
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Since CO2 is a well-mixed greenhouse gas, the distribution of CO2 emissions between sectors of 

activity or geographical locations does not influence the climate system’s response to those 

emissions. Accordingly, the pursuit of the most cost-effective mitigation opportunities, irrespective of 

sector or geography, should be incentivised. We welcome the agreement of a global market-based 

measures scheme to address CO2 emissions from international aviation, which will enable reductions 

in UK aviation’s net CO2 emissions over and above the substantial reductions made within the aviation 

industry itself.  

Looking closer to home, CO2 emissions from UK aviation accounted in 2014 for some 7.4% of the 

UK’s total CO2 emissions
12

. This figure has risen - from slightly under 3% in 1990
13

 - as aviation 

activity has continued to grow strongly while over the same period the UK as a whole (comprising all 

sectors of activity including international aviation and international shipping) has reduced its total CO2 

emissions by around a quarter. Aviation’s proportion of UK emissions is likely to continue to rise into 

the future as other sectors of economic activity - particularly electrical power generation and sectors 

amenable to increased electrification such as light duty road-transport and domestic space heating – 

reduce their carbon intensity very substantially over the coming decades. The UK’s Committee on 

Climate Change recognises that cost-effective opportunities for deep decarbonisation vary between 

different sectors of activity, and that some sectors - particularly aviation, agriculture and parts of 

industry - are not expected to reach zero emissions by 2050 [CCC, 2016a]. 

Nonetheless, UK aviation CO2 emissions per terminal passenger reduced by 20% between 2000 and 

2014
14

, and our CO2 Road-Map shows how the carbon-intensity of UK aviation can be reduced very 

substantially between 2010 and 2050 through a combination of measures. Additional reductions in UK 

aviation’s carbon intensity post 2050 are likely but lie largely beyond the scope of this document. 

1.6 Motivation for an Updated Road-Map 

Since our CO2 Road-Map was last updated in 2012, the following significant developments have taken 

place: 

 The Airports Commission has published demand growth scenarios encompassing a range of 

economic futures and various options for additional runway capacity in the South East of the 

UK [AC, 2015]. 

 Several new aircraft types have been announced, and will enter service in the next few years. 

These include the Airbus A330neo, the Boeing 777X, the Boeing 787-10 and the Airbus 

A321LR. 

 The marketplace success of the Airbus A320neo family and Boeing 737 MAX family, and the 

resulting very large order-books, means that their production runs will likely be longer than we 

previously supposed. As a result, our view of the timescale within which their respective 

successor aircraft types will enter service has changed materially. 

 A further three classes of alternative fuel for aviation have been certified for commercial use, 

and together with a significant expansion in the range of suppliers offering these fuels this has 

expanded the options available to aircraft operators wishing to employ them. This area 

continues to develop rapidly, both technically and commercially. 

 The UN’s International Civil Aviation Organization (ICAO) has agreed an international fuel-

efficiency standard for new aircraft, to enter force from 2020. 

 ICAO has also agreed a global market-based measures scheme applicable to international 

aviation, which will enable aviation to fund cost-effective emissions reduction activities in other 

                                                      
12

  Data source: [NAEI], UK total includes CO2 emissions from bunker fuels (aviation and marine) 
13

  Data source: [NAEI], UK total includes CO2 emissions from bunker fuels (aviation and marine) 
14

  Source: SA analysis of data from [NAEI] and [CAA] 

file://Denasvf1a/et_global_1/Env_Tech/06_ORGANISATIONS/SA%20-%20SustAvn/04_publications/CO2RoadMap/v3/00_theReport/www.sustainableaviation.co.uk


Sustainable Aviation CO2 Road-Map 2016  © Sustainable Aviation, Dec 2016 

www.sustainableaviation.co.uk  Page 11 of 83 

sectors through the purchase of offsets. We note that a high proportion of UK aviation CO2 

emissions is due to international routes, and so this development has considerable relevance 

to the UK. 

 In December 2015, over 190 of the world’s nations reached an agreement, known as the Paris 

Agreement, which aims to limit rises in global average temperature (relative to pre-industrial 

levels) to well below 2 degrees C, with an aspiration to limit the rise to 1.5 degrees C. The 

Paris Agreement goes beyond the basis upon which the UK’s current climate policy is 

founded. In [CCC, 2016a], the Committee on Climate Change (CCC) explores the implications 

of the Paris Agreement for UK climate policy, recommending that “the Government does not 

alter the level of existing carbon budgets or the 2050 target now” and that “The priority for now 

should be robust near-term action to close the gap to existing targets and open up options to 

reach net zero emissions”. [CCC, 2016a] also re-iterates the CCC’s “central” scenario to 2050, 

representing CCC’s “best assessment of the technologies and behaviours required to meet 

targets cost-effectively while meeting the other criteria in the Climate Change Act”, in which 

UK aviation emissions in 2050 are “around 2005 levels”. 

 Following the outcome of a referendum held in mid-2016, the UK is now on a path towards 

leaving the European Union. [CCC, 2016b] considers the implications of this development for 

UK climate policy, concluding that "The UK’s 2050 target for reducing greenhouse gas 

emissions and the legislated carbon budgets (including the fifth carbon budget set in July 

2016) remain appropriate as part of a UK contribution to global efforts to tackle climate 

change". Nonetheless, there will no doubt be implications for UK travel patterns and the 

strength of the UK economy, with a resulting impact upon levels of UK aviation activity. [IATA, 

2016] provides a preliminary analysis of the topic, discussing relevant factors and suggesting 

that “the number of UK air passengers could be 3-5% lower by 2020”. Subsequent analysis by 

IATA
15

 suggests that UK passenger traffic, as measured by number of passengers, could by 

2035 be 6% smaller in a “hard” Brexit case than in a “soft” Brexit case. Our view is that the 

consequences of the 2016 referendum result will play out over a number of years, and that 

future updates of our Road-Map will be better placed than this one to assess any resulting 

impact upon levels of demand for UK aviation. In this edition of our Road-Map, we do not take 

explicit account of any effects related to the 2016 referendum result. 

1.7 Methodology 

As with our previous Road-Maps, we first consider the likely growth in demand for UK aviation, using it 

to derive a hypothetical “no-improvements” CO2 emissions scenario. We then consider the potential 

for mitigation due to improvements in air-traffic management and operational practices, more efficient 

engines and aircraft, and the increasing use of sustainable aviation fuels. We also consider the further 

contribution from market-based measures which will be required to supplement the expected 

reductions from the sources described immediately above if UK aviation is to reduce its net CO2 

emissions in 2050 to half of their 2005 levels. 

1.8 Options for Reducing CO2 

Section 3.3 of our 2012 CO2 Road-Map [SA, 2012] set out a number of broad approaches for reducing 

CO2 from aviation. One item that was missing from that list, and whose prospects have strengthened 

considerably since 2012, is the partial or complete electrification of aircraft propulsion for certain 

sectors of the market. This is a topic that is explored more deeply in section 4.10.2 below. 

                                                      
15

  http://www.iata.org/publications/Pages/brexit-impact-uk.aspx 
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1.9 The Role of Government 

This document explores the substantial efforts being made across all parts of the aviation industry to 

improve fuel-efficiency and reduce CO2-intensity, and sets out SA’s view of how those efforts will 

impact CO2 emissions from UK aviation relative to a hypothetical no-improvements scenario. 

However, bringing to fruition the projections set out in our CO2 Road-Map will not only require the 

continued commitment and focus of the aviation industry itself, but will also rely on engagement from 

Government. 

 Government should continue to support airspace modernisation in the UK, and maintain 

momentum towards improved Air Traffic Management (ATM) collaboration across Europe. 

 We acknowledge the significant levels of government support to the UK aerospace industry 

provided through initiatives such as the Aerospace Growth Partnership (AGP). In the coming 

years Government must ensure that access by UK aerospace industry to ongoing funding for 

high-value collaborative R&D remains in place. 

 SA believes that there is great potential for the development of new supply chains for 

Sustainable Aviation Fuels (SAF) in the UK. The SA Fuels Road-Map [SA, 2014] identified the 

potential for 5-12 UK production facilities producing a range of sustainable fuels and 

chemicals in the period to 2030. Government has recently indicated that there will be a role for 

SAF in future transport policy. A lack of policy certainty has damaged investor confidence and 

deterred investment in new UK infrastructure. We urge the Government to introduce binding 

legislation and to provide clear long-term policy as soon as possible to enable the UK to 

realise the opportunities for UK sustainable fuels production.  

 We welcome the role played by the UK Government in negotiations towards the ICAO global 

MBMs agreement, which supports as far as 2035 the global aviation industry’s carbon neutral 

growth ambition. Government should now focus on implementation details including avoiding 

duplication of coverage with regional schemes. Government should also start the process 

towards the global mechanism for 2035 onwards, which will be essential in supporting the 

global aviation industry’s commitment to reduce net aviation CO2 emissions by 50% by 2050, 

relative to 2005 levels, while increasing capacity in support of economic growth. 

In reaching our view of the extent to which mitigation options identified in this document will reduce 

CO2 emissions from UK aviation, we have assumed that suitable levels of Government engagement 

will be achieved with respect to each of the above areas. 

1.10 Document Structure 

The remainder of this document is structured as follows: 

 Section 2 sets out our hypothetical “no-improvements” scenario detailing the notional growth 

in CO2 emissions from UK aviation that would take place assuming no improvements in fleet 

fuel efficiency, no improvements in operational practices, and no adoption of sustainable 

aviation fuels. 

 In sections 3 to 5 we set out our assumptions and analysis concerning the potential for 

aviation to improve its carbon intensity through a variety of within-sector measures. 

 Section 6 discusses opportunities to reduce aviation’s net emissions further through market-

based measures which enable aviation to fund mitigation actions in other sectors in cases 

where they can be implemented more cost effectively than within the aviation industry itself. 

 Finally, section 7 summarises the assumptions and presents the Road-Map itself along with a 

discussion of its key messages. 
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2 Hypothetical “No-Improvements” Scenario 

SUMMARY 

This hypothetical scenario uses as its starting point the Airports Commission’s “Global 

Growth” economic scenario, assuming new runway capacity in South East England and 

assuming a “carbon-traded” framework. 

Given these assumptions and choices, in the absence of any improvements in fleet fuel 

efficiency or in operational practices, and assuming no use of sustainable aviation fuels, CO2 

emissions from UK aviation would rise by 155% between 2010 and 2050, implying an average 

annual growth rate of 2.37%. This is a slightly higher average growth rate than that used in our 

2012 Road-Map, representing a balance between a number of factors as described in this 

chapter. 

Subsequent chapters of this document use this hypothetical “no-improvements” scenario as a 

reference against which the potential impact of CO2 mitigation measures can be assessed. 

2.1 Introduction  

In this section we identify the hypothetical trajectory that UK aviation’s CO2 emissions could be 

expected to follow in the absence of any action to improve the industry’s carbon intensity. Our 

hypothetical “no-improvements” scenario therefore assumes a constant level of technology, 

operational procedures and sustainable aviation fuel penetration, in which more aviation activity is 

delivered at the same load factors using an increasing number of the same types of aircraft without 

changing over time the manner in which they are operated or the type of fuel used. This hypothetical 

“no-improvements” trajectory for UK aviation CO2 therefore follows forecast growth in aviation 

activity
16

, and serves as a reference against which the potential impact of our anticipated improvement 

activities can be assessed. 

Clearly, this hypothetical scenario does not correspond to a “business as usual” scenario, since 

“business as usual” involves the rigorous pursuit of cost-reduction opportunities of which improving 

fuel efficiency - and hence carbon intensity - is a major part. 

2.2 Defining “Growth in Aviation Activity” 

Growth in aviation activity can be expressed in many different ways, not all of them representative of 

the corresponding growth in CO2 emissions that would take place in a hypothetical “no-improvements” 

scenario. For example, growth could be expressed in terms of numbers of passengers, or number of 

air transport movements. However, neither of those metrics captures the distance travelled by each 

passenger or aircraft, and therefore they do not capture fundamental shifts in the market, for example 

shifts in the balance between long-haul and short-haul flights. A more appropriate unit is the Revenue 

Passenger Kilometre (RPK) which captures both the number of passengers carried and the distance 

of travel. Growth in freight activity can be similarly represented using Freight Tonne Kilometres 

(FTKs), capturing both the number of tonnes uplifted and the distance travelled. 

Overall air-freight activity comprises two elements – firstly freight carried in the lower hold of 

passenger aircraft (known as “bellyfreight” or “bellyhold”) and secondly freight carried on dedicated 

freighter flights. Fuel-efficiency figures for passenger aircraft typically take account of the carriage of 

bellyfreight, which often forms a significant element of the business models of aircraft operators. 

Clearly, significant changes in the amount of bellyfreight carried can affect fuel-burn of a flight and 

hence the apparent fuel efficiency per passenger kilometre on that flight. Based on evidence 

                                                      
16

  A term which we define below 
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presented below, we make the assumption that bellyfreight tonnage is growing no more quickly than 

passenger numbers. 

A full picture of changing levels of aviation activity can thus be conveyed by considering growth in 

RPKs on passenger flights and, separately, growth in FTKs on dedicated freighter flights. 

2.3 Data Sources, Key Assumptions, and Calculations 

This section provides a summary of our choice of data sources, key assumptions, and calculation 

methods. Full details can be found in APPENDIX B. 

Our demand growth forecasts for passenger flights are based on those published by the Airports 

Commission [AC, 2015]. Starting with the family of demand growth forecast trajectories corresponding 

to the Airports Commission’s “Global Growth” economic scenario in a “carbon-traded” framework
17

, we 

have taken the three RPK forecasts corresponding to the three additional-runway-capacity options and 

averaged them
18

 to produce a single trajectory corresponding to our assumed growth in passenger 

flights. 

We have then shown that it is reasonable to assume that growth in FTKs on freighter flights will grow 

no more quickly than RPKs on passenger flights. This has enabled us to estimate an “upper bound” 

demand growth trajectory for freighter flights. Combining the two gives us our hypothetical “no-

improvements” demand growth trajectory. Full details can be found in APPENDIX B. 

2.4 The Hypothetical “No-Improvements” Scenario 

Table 1 summarises our hypothetical “no-improvements” scenario and the method used to combine 

growth in passenger RPKs and freighter FTKs. 
 

Table 1 – Key figures relating to the hypothetical “no-improvements” emissions 

trajectory used in this CO2 Road-Map. Scope: UK aviation. Source: SA analysis of 

data from [AC, 2015], [AC, 2015a], [DfT, 2013] and [CAA] as described in the main text.  

Comparing the last two columns of the table, we can see that the demand-growth trajectory is only 

slightly higher than that which we employed in our 2012 Road-Map [SA, 2012]. This outcome is co-

incidental and is the result of a balance between a number of factors: 

                                                      
17

  Reasons for these choices are given in APPENDIX B. 
18

  Sustainable Aviation does not have a position on the relative attractiveness of the three additional runway capacity options 

Hypothetical “No-Improvements” CO2 trajectory for UK aviation, relative to 2010 

Year 

Pax RPKs Freighter FTKs Combined 

Growth 
factor 

Weighting 
Growth 
factor 

Weighting 
Growth 
Factor 

% Growth 

2016 
Road-Map 

2012 
Road-Map 

2010 1 

0.976 

1 

0.024 

1 0 0 

2020 1.32 1.1 1.31 31 35 

2030 1.75 1.46 1.75 75 72 

2040 2.14 1.79 2.13 113 113 

2050 2.56 2.14 2.55 155 150 

Average growth rate 2.37 % p.a. 2.32 %p.a. 
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 For our 2016 Road-Map we have used recent aviation demand-growth forecasts which take 

account of the strong economic downturn experienced in recent years, and its long-term 

negative impact on demand for aviation. 

 Our assumptions for growth in freighter activity are no longer based on what with hindsight 

was an overly ambitious growth forecast. Nonetheless we expect that our new assumptions 

still overestimate slightly the likely out-turn for freighter FTKs. 

 CO2 emissions from freighters in our baseline year of 2010 are now believed to be 0.8 MtCO2 

[DfT, 2013] rather than the 1.1 MtCO2 [DfT, 2011] which we used in our 2012 Road-Map. As a 

result, not only is the rate of growth in freighter FTKs less strong in our 2016 Road-Map than 

in our 2012 Road-Map, but it is starting from a lower baseline position. 

 Increased runway capacity enabling greater aviation activity through reduction in capacity 

constraints. 

Carbon pricing, with a resulting upward pressure on ticket prices and corresponding downward 

pressure on demand for aviation, is employed both in the [AC, 2015] forecasts upon which our 2016 

Road-Map is based, and also in the [DfT, 2011] forecasts upon which our 2012 Road-map was based. 

The assumed price of carbon in 2050 is respectively £196 (in 2008 pounds, figure 4.1 of [AC, 2015]) 

and £200 (in 2009 pounds, box 2.4 of [DfT, 2011]). 

In a hypothetical “no-improvements” scenario such as that illustrated in Figure 1, CO2 emissions from 

UK aviation would rise by 155% during the period from 2010 to 2050, implying an average annual 

growth rate of 2.37%. In subsequent sections of this document we examine opportunities for mitigating 

this growth-driven upward pressure on CO2 emissions from UK aviation. 

 

Figure 1 – UK aviation CO2 emissions, relative to 2010, in a hypothetical “no-

improvements” scenario in which technology levels, operational practices, and 

sustainable aviation fuel penetration levels remain unchanged from 2010. Scope: 

UK aviation. Source: SA analysis of data from [AC, 2015], [AC, 2015a], [DfT, 2013] and 

[CAA] as described in the main text. 
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3 Improvements in Air Traffic Management and Operations 

SUMMARY 

Improvements in air traffic management and operational practices are likely to improve the 

carbon intensity of UK aviation by around 8.7% by 2050 relative to 2010, with the potential for 

additional savings which we do not at this stage include in our assumptions. This result is very 

similar to the 2012 Road-Map, although we have substantially improved the calculation 

methodology in one area within this category. 

To enable these improvements, Government must continue to support airspace modernisation 

in the UK, and maintain momentum towards improved Air Traffic Management (ATM) 

collaboration across Europe. 

3.1 Introduction 

As with our 2012 Road-Map [SA, 2012], this section sets out our view of likely improvements in UK 

aviation’s carbon intensity arising from more efficient air traffic management (ATM), more efficient 

aircraft operations, and the substitution of some aircraft auxiliary power unit (APU) usage with more 

efficient and/or lower-carbon airport-based alternatives. A useful discussion of the range of 

opportunities for fuel-efficiency improvement through improved ATM and operational practices can be 

found in [ATAG, 2016]. Here we focus on assessing the scale of the available improvements, specific 

to UK aviation. 

3.2 Air Traffic Management (ATM) 

3.2.1 Introduction 

Section 4.2 of our 2012 CO2 Road-Map provides an overview of this 

topic and the broad areas in which efficiency improvements may be 

obtained, as well as listing some of the initiatives underway at that 

time. A more in-depth discussion of improvement opportunities has 

since been published by NATS
19

. In this 2016 Road-Map, we again 

consider ATM-related CO2 mitigation opportunities in three 

categories – 1) near term in NATS controlled airspace, 2) near term 

in non-NATS airspace, and 3) longer term. We also list some recent 

developments and achievements that have taken place since 2012. 

3.2.2 Near-Term ATM-related CO2 Mitigation Opportunities – on ground and in NATS airspace 

In 2008, NATS committed to a target of reducing CO2 emissions from aircraft under NATS control by 

10% per flight by 2020 relative to a 2006 baseline. However, the scope of “aircraft under NATS 

control” is rather different from the scope of “UK aviation”. In APPENDIX C, we present our updated 

and expanded analysis of how the NATS target translates into a reduction of 2.8% in CO2 from UK 

aviation by 2020, relative to 2010. 

Although the above discussion refers to a stated target for 2020, much progress has already been 

made towards the achievement of that target. [NATS, 2016] describes recent achievements and 

ongoing work to improve ATM efficiency, of which some highlights are as follows: 

                                                      
19
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 A 4.3% reduction in CO2 emissions (relative to the 2006 baseline) has been achieved so far, 

equivalent to reducing CO2 emissions from aircraft under NATS control by some 1.1 MtCO2 

per year relative to 2006 emissions. 

 XMAN (Cross Border Arrival Management) allows airborne holding time to be reduced by 

instructing aircraft to reduce slightly their cruise speed at a distance of up to 350 nautical miles 

from their destination airport, thus timing their arrival more precisely. Previous arrangements 

for London-inbound flights meant that such speed reduction could be instructed only 80 

nautical miles from the destination. In the coming years, XMAN will be deployed more widely 

across Europe, enabling the benefits to apply to UK-outbound flights (within scope of our 

Road-Map) as well as to UK-inbound flights (out of scope).  

 As part of the Borealis alliance, the implementation of Free Route Airspace, firstly in parts of 

Scottish airspace and then more widely across UK airspace, will allow aircraft greater scope to 

follow fuel-optimal routings (including taking account of weather conditions) rather than 

following pre-defined routes. The iTEC system
20

, which entered operational service in 2016, 

will support the introduction of Free Route Airspace above 28,000 feet. 

 The number of continuous descent operations continues to increase, with work underway to 

optimise the altitude at which continuous descent commences, increasing the efficiency 

improvement
21

. 

3.2.3 Near-Term ATM-related CO2 Mitigation Opportunities – Non-NATS airspace 

We anticipate that other ANSPs will also deliver improvements in ATM efficiency within the 2010-2020 

timeframe
22,23

, and that these will yield CO2 reductions during the en-route and arrival phases of 

outbound international flights once they leave NATS airspace. We conservatively estimate that the 

benefit to these flights corresponds to two tenths of the 10% efficiency improvement targeted by 

projects such as the Single European Sky (SES)
24

. In 2006, CO2 emissions outside NATS airspace 

attributable to flights which departed from UK airports amounted to 28.1 MtCO2
25

. Saving 2% of these 

emissions would yield a reduction of 0.56 MtCO2 relative to 2006 emissions, corresponding to 1.5% of 

total UK aviation CO2 emissions in 2006. Again, due to the anticipated delivery timescale of these 

savings, we assume that this 1.5% also applies to the Road-Map’s 2010 baseline. To take account of 

possible uncertainties, in our Road-Map we assume 1.0% as the likely contribution from this source.  

3.2.4 Longer-Term ATM-related CO2 Mitigation Opportunities  

In this category, we have no additional information relative to that available in 2012. As a result we 

again assume a 2.5% efficiency improvement from longer-term (2020-2050) ATM improvements 

including restructuring of airspace boundaries and improved separation minima allowing more 

optimum flight profiles. 

As with our 2012 Road-Map, it has not been possible in this longer-term ATM category to produce a 

calculation-based estimate, and we rely on judgement to underpin our assumption in this category. 

                                                      
20

  http://www.nats.aero/news/next-generation-air-traffic-technology-goes-live-at-nats-prestwick/, viewed 14
th
 July 2016 

21
  Although CDO will yield genuine reductions in aviation CO2 emissions, only the savings relating to domestic arrivals are 

within scope of our Road-Map, while those relating to international arrivals are not. 
22

  See for example http://www.navcanada.ca/EN/about-us/Documents/CIFER_English_Final_Medium_Res.pdf, which 

describes ATM improvements implemented and planned by NAV CANADA which are expected to save some 15 million 

tonnes of CO2e (cumulative) between 2010 and 2020. A proportion of this saving is attributable to flights from Europe to 

North America. 
23

  http://www.sesarju.eu/sites/default/files/documents/reports/SESAR_Demo_Brochure_2012_2014.pdf 
24

  http://www.sesarju.eu/benefits/environment/how-sesar-contributing-environmental-flight-performance, viewed 14
th
 July 2016 

25
  38.1 MtCO2 total [NAEI, 2011], minus the 10.0 MtCO2 taking place in NATS airspace, leaves 28.1MtCO2 outside NATS 

airspace. 
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However, we anticipate that greater clarity will emerge over time, and we shall revise our assumptions 

in this category as and when substantially better information becomes available.  

3.2.5 Supporting Products, Technologies and Research Programmes 

In addition to the examples of improvement initiatives listed in section 3.2.2 above, other 

technologies, products and research programmes offering opportunities for efficiency improvement in 

ATM and/or aircraft operations over a variety of timescales include the following: 

 NATS is investing significantly to transform operations
26

 in support of the Single European Sky 

project, helping to reduce inefficiency between different areas of NATS airspace.  

 The TRANSIT research programme, announced during 2016, will develop opportunities to 

optimise aircraft taxi routings around airports, reducing “aeroplane taxi times, operating costs 

and environmental impact at airports around the world”
27

. 

 NASA’s Traffic Aware Planner application searches for “route and/or altitude changes that 

could save fuel or flight time and displays those solutions directly to the flight crew”
 28

. 

 Boeing’s Wind Updates service “delivers timely, accurate weather information to the FMC 

while in flight to enhance flight efficiency and on-time performance”
29

. 

 Boeing’s Direct Routes service “identifies and communicates emergent in-flight opportunities 

to reduce one minute or more of flight time”
30

. 

 NASA’s Terminal Sequencing and Spacing tool “will allow pilots to better use flight deck 

automation to fly fuel-efficient, optimized profile descents”
31

. 

 Required Navigation Performance (RNP) and the Global Navigation Satellite Landing System 

(GLS) use navigation satellites for precision guidance of aircraft. Although most commercial 

aircraft today are equipped with RNP and GLS capability, further opportunities exist to deploy 

that capability to full effect and thus further efficiency improvement opportunities exist. 

Advantages of full RNP/GLS deployment include reductions in track miles flown, and an 

increase in airport capacity (with possible reductions in airborne holding) enabled by 

concurrent approach and landing operations on parallel runways. 

 The TOPFLIGHT collaborative project - involving NATS, Airbus ProSky, Boeing and British 

Airways - tested sustainable gate-to-gate transatlantic flight optimisation, demonstrating a 

potential reduction in CO2 emissions of up to 2% for each transatlantic flight, without detriment 

to other airspace users [SA, 2015]. 

 Rolls-Royce VisiumFUEL enables operators “to quickly understand their current fuel usage 

and implement immediate fuel saving initiatives…..Whether it is a pilot making confident fuel-

related decisions without compromising safety, or control centre staff improving the routing of 

                                                      
26

  http://www.nats.aero/news/next-generation-air-traffic-technology-goes-live-at-nats-prestwick/, viewed 21
st
 Sept 2016 

27
  https://alumni.cranfield.ac.uk/Public/News_Item.aspx?Id=1467&Ref=en0816, viewed 16

th
 Aug 2016 

28
  http://www.nasa.gov/press-release/nasa-developed-technology-aims-to-save-commercial-airlines-fuel-time, viewed 14

th
 July 

2016 
29

  http://www.boeing.com/resources/boeingdotcom/commercial/services/assets/brochure/fs-windupdates.pdf, viewed 30
th
 

August 2016 
30

  http://www.boeing.com/resources/boeingdotcom/commercial/services/assets/brochure/directroutes.pdf, viewed 20
th
 August 

2016 
31

  http://www.nasa.gov/press-release/nasa-developed-air-traffic-management-tool-flies-into-use, viewed 14
th
 July 2016 
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aircraft to minimise unnecessary fuel consumption, VisiumFUEL provides the insight they 

require”
32

. 

 Airbus NAVBLUE
33

 offers a range of digital flight operations solutions which contribute to 

reducing fuel consumption and noise. ELISE by NAVBLUE uses full 3D interference 

simulation software to predict and analyse disturbances caused by objects such as buildings 

and aircraft on Instrument Landing System (ILS) signals. ELISE helps airport services to 

increase capacity, reduce holdings and increase safety. This ultimately increases the 

efficiency of Air Traffic Management, reducing costs and emissions. Airspace by NAVBLUE 

allows airports to implement Performance Based Navigation (PBN), reducing fuel-burn and 

hence CO2 emissions by making shorter and more direct routes possible and reducing airport 

and airspace congestion whilst improving access to airports in poor visibility. NAVBLUE’s N–

Flight Planning software suite is a flight plan optimisation solution that helps create the safest 

and most cost-effective and energy–effective routes. 

 NASA’s Flight Deck Interval Management system
34

 (FIM) offers the potential for more precise 

management of the time interval between successive aircraft as they arrive at airports, 

enabling increased runway throughput and reductions in aircraft fuel-burn. Demonstration 

flight tests are planned for 2017. FIM uses NASA’s ASTAR software which was demonstrated 

in 2014 on Boeing’s ecoDemonstrator 787 aircraft (see section 4.10.1) 

3.2.6 Summary 

The above discussion is summarised in Table 2. 

 

ANSP Timescale Phase of Flight 

Assumed Saving 

(% of UK aviation CO2) 

2016 

Road-Map 

2012 

Road-Map 

NATS Pre 2020 All 2.8 3.0 

Other Pre 2020 En-Route, Descent 1.0 1.0 

NATS & Other Post 2020 All 2.5 2.5 

TOTAL 6.3 6.5 

Table 2 – assumed scope for reductions in CO2 emissions from flights which 

depart from UK airports, arising from anticipated improvements in ATM 

efficiency. 

3.3 APU Substitution 

This topic relates to reducing the use of aircraft auxiliary power units (APUs) while aircraft are on 

stand, instead providing aircraft with electrical power and air-conditioning services from airport 

infrastructure. Our analysis of the potential for APU substitution to reduce CO2 emissions from UK 

aviation (relative to a 2010 baseline) is set out in section 4.3 of our 2012 CO2 Road-Map. Having 

reviewed the topic again, our view is that the figure of 0.3% assumed in our 2012 Road-Map remains 

valid, subject to the availability of competitively-priced FEGP
35

/PCA
36

 at UK airports.  

                                                      
32

  http://www.controlsdata.com/civil-aero/fuel-management, viewed 31
st
 August 2016 

33
  https://navblue.aero/en/products-and-services/overview, viewed 29

th
 Sept 2016 

34
  https://www.nasa.gov/aero/nasa-aircraft-arrival-technology-gets-big-test-in-2017, viewed 03 Nov 2016 

35
  FEGP = fixed electrical ground power 

36
  PCA = pre-conditioned air 
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3.4 Aircraft Operations 

In section 4.4 of our 2012 CO2 Road-Map, we considered opportunities to reduce UK aviation CO2 

through higher passenger load-factors, better optimisation of fuel-loading, and miscellaneous 

measures such as maintenance of door seals and dents, regular cleaning of engines and airframes, 

and reducing the carriage of potable water. 

Our 2016 review of this area revealed good progress in all three areas. For example, [SA, 2015] gives 

an overview of the efforts being made across the industry and progress made so far by SA members. 

Our view is that the assumption used in our 2012 Road-Map of a 2.1% fuel-efficiency improvement 

(relative to a year 2010 baseline) remains valid. However, in our 2016 Road-Map we assume that this 

improvement is delivered over a ten-year period to 2020. 

One area of potential improvement that has not been formally included into our assessment is that of 

electric taxiing, either through the use of electric motors mounted in the aircraft itself and powered by 

the aircraft’s APU
37

, or through the use of a dedicated electrically-propelled tractor
38

. The prospects for 

electric taxiing’s deployment at scale are not yet clear. However, we acknowledge the possibility that it 

may enable a material reduction in global aviation emissions in future years and will monitor its 

deployment. 

3.5 Potential Mitigation Impact – ATM and Operations 

Table 3 summarises the key figures presented in this chapter. In our 2016 Road-Map, as with our 

2012 Road-Map, we assume a potential efficiency improvement opportunity from ATM and operations 

of just under 9%. 

 

Category Assumed % CO2 Saving 

ATM 6.3 

APU substitution 0.3 

Aircraft Operations 2.1 

TOTAL 8.7 

Table 3 – potential reductions in CO2 emissions from UK aviation, due to 

anticipated improvements in ATM efficiency and operational practices. 

                                                      
37

  See for example http://www.wheeltug.com/ 
38

  See for example http://www.taxibot-international.com/  
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4 Improvements in Aircraft and Engine Efficiency 

 

SUMMARY 

1. Introduction of the “imminent” generation of aircraft types will improve the fleet-

average fuel efficiency of UK aviation by some 22% by 2050 relative to the year 

2010 baseline fleet, with the bulk of this improvement delivered by around 2040. 

2. Introduction of the subsequent “future” generation of aircraft types from 2035 

onwards has the potential to further improve fleet average fuel efficiency within UK 

aviation by some 21% by 2050, taking account of likely fleet penetration by that 

date. 

3. This yields a combined potential improvement in fleet-average fuel efficiency (2010-

2050) of some 39%
39

. 

4. Post 2050, improvements in fleet-average fuel efficiency will continue due to the 

ongoing penetration into the fleet of “future” aircraft types. However, those 

improvements lie beyond the time-horizon of our Road-Map and therefore do not 

feature in our analysis. 

We acknowledge the significant levels of government support to the UK aerospace 

industry provided through initiatives such as the Aerospace Growth Partnership (AGP). 

In the coming years Government must ensure that access by UK aerospace industry to 

ongoing funding for high-value collaborative R&D, essential for delivering highly-

efficient future aircraft and propulsion systems, remains in place. 

 

CHANGES SINCE OUR 2012 CO2 ROAD-MAP 

“Imminent” Aircraft 

1. In the narrow-body segment, the extent to which the Airbus A320neo family and the 

Boeing 737 MAX will improve upon the fuel efficiency of their respective predecessors 

is now significantly greater than was understood in 2012. An additional member of the 

Airbus A320neo family, the A321LR, has been launched. 

2. In the wide-body segment, three new aircraft types have been launched: the Airbus 

A330neo
40

, Boeing 777X
41

 and Boeing 787-10
42

.  

3. We have taken advantage of additional data sources to establish a more accurate 

picture of the baseline (year 2010) fleet, rather than assuming that the baseline fleet 

                                                      
39

  0.78 (representing a 22% improvement from “imminent” aircraft types relative to the baseline fleet) multiplied by 0.786 

(representing a further 21.4% improvement from “future” aircraft types,) yields 0.613 i.e. a combined improvement of 38.7%. 
40

  http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/airbus-launches-the-a330neo/, viewed 26 Apr 

2016 
41

  http://boeing.mediaroom.com/2013-11-17-Boeing-Launches-777X-with-Record-Breaking-Orders-and-Commitments, viewed 

26 Apr 2016 
42

  http://boeing.mediaroom.com/2013-06-18-Boeing-Launches-787-10-Dreamliner, viewed 26 Apr 2016 
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was composed solely of the latest aircraft types available in that year. This enables a 

more complete assessment of the fuel-saving opportunity presented by replacing the 

baseline fleet with “imminent” aircraft types. 

4. We have increased the granularity of our fleet replacement model for the “baseline” to 

“imminent” transition, now considering ten aircraft categories rather than three. This 

allows us to capture more correctly the timing of various improvements to fleet fuel 

efficiency. 

 “Future” Aircraft 

5. The considerable marketplace success of the Airbus A320neo and the Boeing 737 MAX 

families means that their respective production runs will likely be significantly longer 

than we anticipated in our 2012 Road-Map. As a result we now believe that their 

replacements will be some 10 years later than we previously assumed. 

6. Our fleet replacement model for the “imminent” to “future” transition now considers four 

aircraft categories rather than three. This allows us to distinguish between different 

parts of the “wide-body” aircraft category whose replacement timescales and 

characteristics may be different. 

Outcome 

7. As a result of the above changes, fleet efficiency improvements related to the 

introduction of “imminent” aircraft types will be larger than we anticipated in our 2012 

Road-Map, while the subsequent transition from “imminent” to “future” aircraft will have 

a lower impact by 2050 due to its later starting point. At 2050 the overall improvement in 

fleet fuel efficiency relative to the 2010 baseline is very similar to our 2012 assessment. 

4.1 Introduction and Framework 

This chapter sets out our view of the potential for improvements in aircraft and engine fuel efficiency to 

reduce UK aviation’s carbon intensity by 2050. We detail our assumptions concerning the fuel 

efficiency of “imminent” and “future” aircraft relative to their respective predecessors, their likely entry 

into service dates, and their resulting impact on fleet-average fuel efficiency. We also provide an 

update concerning technology options being explored by the aerospace manufacturers, which 

collectively underpin our fuel-efficiency assumptions for “future” aircraft. Throughout this chapter, we 

define “the fleet” as aircraft used to conduct flights falling within the scope of “UK aviation”. 

As with our 2012 CO2 Road-Map [SA, 2012], we start with a “baseline” (“generation 0” or “G0”) fleet in 

the year 2010 and then consider in turn two distinct generations of aircraft (“imminent” or “G1” and 

“future” or “G2”) which, as they displace older aircraft from the fleet, cause a reduction in CO2 

emissions for a given level of aviation activity. 

However, relative to our 2012 CO2 Road-Map, our fleet model now has more granularity. When 

modelling the replacement of the 2010 “baseline” fleet with “imminent” aircraft types, we use a fleet 

model based wherever possible on individual aircraft families, resorting to aircraft size categories only 

where necessary due for example to a lack of clarity concerning likely market share of competing 

aircraft, or a lack of information concerning the comparative efficiency of particular aircraft pairs. When 

modelling the transition from “imminent” aircraft to “future” aircraft, rather than the three size 

categories employed in our 2012 Road-Map, we now consider four size-categories of aircraft: “narrow-

body” (NB), “small-to-medium twin aisle” (SMTA), “large twin-aisle” (LTA) and “very-large” (VL). This 
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enables a more realistic representation of the likely entry-into-service dates and fuel-efficiency 

characteristics, relative to their respective predecessors, of various aircraft types lying in very different 

parts of what was previously a single “wide-body” category. 

4.2 Issues to Consider 

4.2.1 Fuel Price 

Historically, the cost of fuel has accounted for a substantial proportion of the total cost of ownership of 

commercial aircraft. For example, even with crude oil prices currently at relatively low levels, the 

International Air Transport Association (IATA) estimates that in 2015 the global aviation sector spent 

$181 billion on fuel, representing 27% of operating expenses (the lowest percentage since 2005)
43

. 

Aircraft and engine manufacturers have therefore experienced strong demand from customers for 

more fuel-efficient aircraft, and have responded to this with successive generations of aircraft offering 

improved fuel-efficiency over their predecessors. Competition between manufacturers drives very 

significant investment in research and development activities, often over very long timescales. 

In recent times (since 2013), the price of fuel has fallen significantly (see Figure 2). However, 

evidence suggests that airlines are still viewing fuel price with a long-term lens, taking advantage of 

the current respite associated with low crude-oil prices to position themselves more strongly for the 

future and the possibility of higher fuel prices to come.  

 

Figure 2 – spot price of US Gulf-Coast Kerosene-type jet fuel (FOB). Data source: 

US Energy Information Administration. 

In the unlikely event that crude oil prices remain low indefinitely, the introduction of a price for carbon, 

perhaps through a global market-based measures scheme such as that agreed by ICAO in 2016, will 

act to increase the effective price of jet fuel, albeit to an extent that is unknowable at present
44

. 

[Avolon, 2015] considers the possibility that sustained low fuel prices might encourage the return to 

service of stored aircraft. Such aircraft would likely be substantially less fuel efficient than aircraft of 

the following generation, whose introduction into the fleet they might delay. Nonetheless, the report 
                                                      
43

  Assuming oil at $55 per barrel. Source: http://www.iata.org/pressroom/facts_figures/fact_sheets/Documents/fact-sheet-

fuel.pdf 
44

  It should also be noted that an element of carbon pricing is inherent to the demand growth forecasts upon which we have 

based our hypothetical no-improvements scenario, as described in chapter 2. 
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concludes that the number of aircraft identified “as potentially returning to operation is extremely small 

in the context of the global fleet”. The same report also considers the possibility of deferred 

retirements arising from sustained low fuel prices, concluding that “the aggregate displacement of 

younger aircraft in the operating fleet, net of additional demand growth, is not expected to exceed a 

manageable 5% to 10% of new deliveries”.  

In the very unlikely event that fuel price stays low and is not supplemented with a material carbon 

price, the effects upon our Road-Map would likely be limited to the following: 

 Efficiency characteristics and EIS of “imminent” aircraft types: not affected 

o The efficiency characteristics of almost all of the “imminent” aircraft types considered 

in our analysis are already defined, and many of them have already entered service or 

will do so in the next couple of years.  

 Timescale for fleet transition from baseline to “imminent” aircraft types: lengthened slightly 

o Although in a persistently-low fuel-price scenario, aircraft operators may choose to use 

older aircraft for slightly longer prior to spending on newer, more efficient aircraft
45

, 

nonetheless aircraft have finite in-service lives and eventually will need to be replaced. 

Consequently, a delay in the uptake of “imminent” aircraft might be expected but it is 

reasonable to assume that by 2050 the number of baseline aircraft still flying will be 

very small, even in a persistently-low fuel-price scenario. 

 Efficiency characteristics and EIS of “future” aircraft types: dependent upon future fuel-

efficiency standards 

o A persistently low fuel price could alter the economics of new aircraft such that non-

fuel-related characteristics dominate the design drivers for future aircraft types, which 

as a result could, based on purely commercial drivers, be less fuel-efficient than in a 

higher fuel-price scenario. However, future fuel-efficiency standards - such as 

developments of that agreed in 2016 by ICAO - may mitigate such effects. 

 Timescale for fleet transition from “imminent” to “future” aircraft types: delayed or lengthened 

materially 

o In a persistently-low fuel-price scenario, retirements are likely to be deferred as older 

aircraft remain competitive for longer. Unlike the baseline-to-“imminent” fleet transition, 

the impact on the 2050 fleet fuel-efficiency in our Road-Map model due to delays in 

the commencement of the “imminent” to “future” fleet transition could be material, 

since any delay or lengthening of that fleet transition can impact the degree to which 

the fleet transition is completed by 2050. 

In our 2016 CO2 Road-Map, we make the assumption that in the long-term, fuel-prices, perhaps 

supplemented by carbon prices, will not remain at their currently low levels, and that aircraft 

replacement schedules or future aircraft characteristics will not be impacted materially. Should fuel 

prices remain low for many years, and should a carbon price fail to materialise, future updates of our 

Road-Map will take that into account. 

4.2.2 New Entrants 

The extent to which aircraft from emerging competitors such as UAC
46

 and COMAC
47

 will influence UK 

aviation fuel-burn in the future is unclear at present. As a result, this 2016 CO2 Road-Map does not 

explicitly model the impact on fleet fuel efficiency of aircraft from those manufacturers. 

                                                      
45

  At the time of writing, there is little evidence of a significant upward trend in aircraft average retirement ages, despite the 

recent period of low fuel prices. 
46

  United Aircraft Corporation  
47

  Commercial Aircraft Corporation of China 

file://Denasvf1a/et_global_1/Env_Tech/06_ORGANISATIONS/SA%20-%20SustAvn/04_publications/CO2RoadMap/v3/00_theReport/www.sustainableaviation.co.uk


Sustainable Aviation CO2 Road-Map 2016  © Sustainable Aviation, Dec 2016 

www.sustainableaviation.co.uk  Page 25 of 83 

It can be argued that our approach introduces no material error to the Road-Map, since for new 

entrants to take a material share of the market will require products of similar fuel-efficiency to those 

offered by established market participants. Furthermore, all manufacturers’ aircraft will be subject to 

the same fuel-efficiency standard (see section 4.2.3).  

Greater clarity on this issue will no doubt emerge over time, and future updates of the Road-Map (e.g. 

in 5 or 10 years from now) may be able to take explicit account of products from these emerging 

manufacturers. 

4.2.3 ICAO Fuel-Efficiency Standard 

The International Civil Aviation Organization (ICAO) has recently agreed a fuel-efficiency standard
48

 

for aircraft. The standard will apply to the certification and production of new aircraft types from 2020, 

modified existing types from 2023, and unmodified existing aircraft types from 2028. 

The aim of this certification standard is to reduce CO2 emissions from aviation by encouraging the 

integration of fuel efficient technologies into aircraft designs and developments, ensuring older aircraft 

are replaced by newer, more efficient designs. 

The CO2 Standard is a certification standard, not an operational standard, and as such does not 

impact current aircraft in use or (until 2028) in production but will impact the next generation of aircraft 

designs represented by the “future” aircraft wedge of the CO2Road-Map. 

Future updates of our CO2 Road-Map will take into account the prevailing standard at the time of their 

preparation. 

4.2.4 Freighters 

In chapter 2 and APPENDIX B we explain that freight-only flights account for only a small single-digit 

percentage of UK aviation CO2 emissions and that we expect their materiality to remain constant or 

perhaps even decline relative to that of passenger flights.  

In the current chapter, we are concerned with the efficiency with which demand for aviation is met. So 

our next step regarding freight-only flights is to reach an assessment of the how the efficiency of the 

freighter fleet may evolve over time. 

Besides variations in the size of freighter aircraft, a key distinction is whether the aircraft was built from 

new as a freighter, or converted from a passenger aircraft. Clearly a converted passenger aircraft is 

likely to be of a previous generation (and hence arguably less fuel-efficient) relative to a new-build 

freighter. Nonetheless, it is likely to be substantially more efficient than an even earlier generation 

passenger-to-freight conversion which it may displace from the fleet, thus resulting in an improvement 

to fleet fuel-efficiency. 

In the absence of available UK-specific data concerning the likely usage balance within UK aviation 

between passenger-conversions and new-build freighters, we make the simplifying assumption that 

the efficiency of the freighter fleet will improve at a similar rate to that of the passenger fleet. The error 

this may introduce to the overall analysis is small, due to the low materiality of freight-only flights. 

4.2.5 Technology Targets 

Significant technology research programmes are required in order to deliver future aircraft with 

substantially improved fuel efficiency. Such research programmes are typically coordinated and 

                                                      
48

  http://www.icao.int/Newsroom/Pages/New-ICAO-Aircraft-CO2-Standard-One-Step-Closer-To-Final-Adoption.aspx 
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funded at the national or international level due to their scale. Associated technology acquisition goals 

have been adopted in the US and Europe as follows: 

 In Europe, the goals of FlightPath 2050 include “In 2050 technologies and procedures 

available allow a 75% reduction in CO2 emissions per passenger kilometre.... relative to the 

capabilities of typical new aircraft in 2000”
49

. The ACARE
50

 organisation has established a 

strategic research and innovation agenda as a route towards those targets. 

 In the US, NASA’s goals for subsonic air transport includes technology acquisition, to 

technology readiness level (TRL) 4-6,  for reductions in aircraft fuel or energy consumption as 

follows
51

,
52

: 

o N+2 goal: by 2020 aircraft energy consumption reduction of 50% relative to 777-200.  

o N+3 goal aircraft energy consumption reduction of 60% by 2025 relative to 737-800 

In section 4.7 below we have used these goals to derive “calibration” points against which to “sense-

check” our proposed central-case assumptions for “future” aircraft fuel efficiency. However, in order to 

allow a like-for-like comparison, we assume that there will be a lead time of several years between 

achievement of the above technology-development goals and the earliest possible entry into service 

(EIS) of a commercial aircraft product embodying the developed technologies and achieving in-service 

fuel-efficiency levels consistent with the goal. With regard to the FlightPath2050 targets, we assume a 

lead-time of 5 years between achievement of the technology goals (usually interpreted to mean 

attainment of TRL6) and EIS of the corresponding aircraft, while for the NASA N+2 and N+3 targets 

we assume a lead-time of 8 years between achievement of TRL4-6 and EIS. 

4.3 Baseline Fleet Composition 

4.3.1 Distribution of 2010 UK Aviation Activity by Aircraft Type 

Figure 3 shows the distribution between aircraft types of CO2 produced by flights departing from UK 

airports, i.e. within UK aviation, for 2010 and 2014. This takes account not only of the number of seats 

installed on an aircraft, but also the distance covered by each flight and the efficiency of each aircraft 

type for the specific mission performed. The changes between 2010 and 2014 are related to 

replacement of B747-400s with A380s and other, twin-engined, aircraft, and a slight migration away 

from B757s towards single-aisle aircraft and/or small twin-aisle aircraft. In other respects, the 

distribution between families / categories shows little change between these two snapshots. There 

may of course be changes within families or categories, as discussed in section 7.3.1. 

In many cases, we can identify a clear and credible “like-for-like” replacement path for aircraft types. 

For example, we assume that in-service examples of the existing 737 family will be replaced largely by 

737 MAX aircraft, and that A320ceo aircraft will be replaced largely by A320neo aircraft. Although 

there will inevitably be some counter examples, the error it will introduce is relatively small.  

Where there is not a clear “like-for-like” replacement path for individual aircraft types, we have 

grouped them into aircraft size categories, specifically SMTA
53

 and LTA
54

. Categories have also been 

applied for regional jets and for turboprops which are both of fairly low materiality in terms of their 

respective shares of UK aviation CO2 emissions. 

This approach represents an improvement upon our 2012 CO2 Road-Map in several respects: 

                                                      
49

  http://www.acare4europe.org/sria/flightpath-2050-goals/protecting-environment-and-energy-supply-0, viewed 21
st
 Sept 2016 

50
  ACARE = Advisory Council for Aviation Research and innovation in Europe 

51
  https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150002081.pdf, viewed 21

st
 Sept 2016 

52
  https://www.nas.nasa.gov/assets/pdf/ams/2015/AMS_20150521_DelRosario.pdf, viewed 21

st
 Sept 2016 

53
  SMTA: “small to medium twin aisle”, category includes A300, A310, A330, A340-200/300, B767, A330neo, B787 

54
  LTA: “large twin-aisle” category includes A340-500/600, B777, A350 XWB, B777X 

file://Denasvf1a/et_global_1/Env_Tech/06_ORGANISATIONS/SA%20-%20SustAvn/04_publications/CO2RoadMap/v3/00_theReport/www.sustainableaviation.co.uk
http://www.acare4europe.org/sria/flightpath-2050-goals/protecting-environment-and-energy-supply-0
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150002081.pdf
https://www.nas.nasa.gov/assets/pdf/ams/2015/AMS_20150521_DelRosario.pdf


Sustainable Aviation CO2 Road-Map 2016  © Sustainable Aviation, Dec 2016 

www.sustainableaviation.co.uk  Page 27 of 83 

 We more correctly take account of the fact that in our baseline year of 2010, replacement of 

some B747-400s by A380s had already commenced, reducing slightly the remaining fuel-

efficiency improvement opportunity. 

 We take account of the migration of some activity from large 4-engined aircraft to medium or 

large 2-engined aircraft  

 We model regional jets and turboprops explicitly, rather than including them within a generic 

“narrow-body” category.  

 We take explicit account of the materiality of the many different aircraft types within what was 

previously a single “narrow-body” size category. 

 We can also explore more deeply the composition of the baseline fleet, and quantify some of 

the additional improvement opportunity arising from replacement with “imminent” aircraft of 

legacy aircraft whose fuel-efficiency is less good than the majority of the baseline fleet. 

 Although wide-body aircraft are still categorised, the use of two categories (SMTA / LTA) 

rather than one (WB) allows us to more effectively capture distinctions between different parts 

of that segment. 

 Our more detailed categorisation of aircraft allows us to model more accurately the phasing of 

the introduction of newer aircraft types.  

 

2010                                                                                             2014 

      

Figure 3 – distribution of CO2 emissions between aircraft types or categories. 

LEFT: 2010. RIGHT: 2014. Scope: UK aviation. SOURCE: SA analysis of data from 

OAG. 
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4.4  “Imminent” Aircraft – Efficiency Characteristics and EIS55 Dates 

APPENDIX D gives details of the fuel-efficiency characteristics of “imminent” aircraft relative to 

previous generation aircraft, as well as their entry into service dates. Table 4 provides a summary. 

 

Aircraft 

Entry 

into 

service
56

 

Manufacturers’ claimed fuel efficiency 

improvement vs previous generation 

aircraft
57

 

2016 Road-Map 
2012 Road-Map 

(for comparison) 

Bombardier C Series 2016 20 20 

Embraer E2 2018 16 – 24 N/A 

Airbus A320neo family 2015 19 – 23 15 

Boeing 737 MAX 2017 14 – 20 10 -12 

Airbus A321LR 2019 30 N/A 

Airbus A330neo 2017 14 N/A 

Boeing 787 Dreamliner 2011 20 – 25 20 

Airbus A350 XWB 2015 25 25 

Boeing 777X 2019 20 N/A 

Airbus A380
58

 2007 40 17 

Table 4 – fuel-efficiency improvements offered by “imminent” generation aircraft 

relative to the aircraft they replace. Note that replacement of significantly older 

members of the baseline fleet (rather than the latest available aircraft in 2010) will 

enable additional efficiency improvements.  

APPENDIX D also explains our assumptions concerning the length of time taken for new aircraft to 

displace corresponding older aircraft from the fleet. A summary can be found in Table 5. 

4.5 “Imminent” Aircraft – Impact on Fleet Fuel Efficiency 

This section sets out the opportunities for the “imminent” aircraft types discussed above to influence 

fleet fuel efficiency in their respective categories, taking account - where possible - of the composition 

of the baseline fleet in the year 2010. In particular we take account of the materiality of different 

aircraft types and the additional improvement opportunities relating to the presence within the baseline 

fleet of “legacy” aircraft which are of an older generation than the immediate predecessors of 

“imminent” aircraft types. Where such account cannot be taken for a particular category, we 

conservatively assume, for the category being considered, that the 2010 baseline fleet was composed 

entirely of the latest aircraft available in that year. 

                                                      
55

  EIS = Entry Into Service – the date at which the first instance of a new aircraft type enters commercial service  
56

  Source: aircraft manufacturers 
57

  See APPENDIX D for references 
58

  The Airbus marketing position regarding fuel efficiency of the A380 relative to that of the 747-400 has been updated since 

2012. The revised position is calculated on a “like-for-like” basis, taking account of the available floor area of the passenger 

cabins in the two aircraft types, and assuming similar proportions of the various possible classes of seating.  
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Note that aircraft representing the “imminent” generation of technology are already entering service 

and/or are currently offered for sale to the market. As such the fuel-efficiency characteristics of these 

aircraft are well-defined and lead us to have a high degree of confidence in their impact, over time, 

upon fleet efficiency. 

It should also be noted that the entry into service dates of “imminent” types, coupled with our 

assumptions concerning fleet refresh periods (see Table 4 and APPENDIX D respectively) mean that 

there is an extremely high likelihood that displacement of the baseline fleet by “imminent” types will be 

complete by 2050, and a high likelihood of completion by 2040. 

APPENDIX E gives the detailed analysis leading to the summary provided in Table 5. 

 

Category 

Replacement Materiality: 

CO2 Share 

(2010)
59

 

Within-

Category 

Improvement 

Overall 

Improvement  
Comment 

Start
60

 
Period 

(years)
61

 
%

62
 Factor Factor % 

RJ 2016 25 0.0225 20 0.8 

0.780 22.0 

Overall improvement 

factor is the sum of 

the within-category 

improvement factors, 

weighted according 

to the materiality of 

each category. 

 

Overall fleet 

efficiency 

improvement 

associated with 

replacing baseline-

fleet with “imminent” 

aircraft is 22.0% 

TP N/A N/A 0.0108 0 1 

A320 family 2015 25 0.1478 20.7 0.793 

B737 family 2010
63

 32 0.0970 19.9 0.801 

B757 2019 10 0.0542 30 0.7 

SMTA 2011 25 0.1407 17.3 0.827 

LTA 2010
64

 30 0.2811 25 0.75 

B747-400 2010
65

 15 0.2180 25 0.75 

A380 N/A N/A 0.0256 0 1 

Other N/A N/A 0.0024 0 1 

TOTAL 1.0000  

Table 5 – values used in our model of the fleet transition from the baseline (year 

2010) fleet to one composed entirely of “imminent” aircraft types. 

                                                      
59

  Source: As Figure 3 (LEFT) 
60

  In many cases the “start” year is simply the EIS date (source: Table 4) of the earliest “imminent” aircraft type applying to that 

category. Exceptions are noted in separate footnotes below. 
61

  Source: APPENDIX D 
62

  Source: APPENDIX E 
63

  Some migration from 737 classics towards 737 Next Generation aircraft is evident during the years 2010-2015. As with the 

LTA category, we model fuel-efficiency improvements in this category, due to a migration from the baseline fleet - via 

intermediate types - to a fleet composed entirely of “imminent” types, as commencing before the first EIS of a corresponding 

“imminent” type. The duration of the fleet transition is extended accordingly. 
64

  A migration from the 777-200 and 777-200ER aircraft towards the more fuel-efficient 777-300ER aircraft (as discussed in 

APPENDIX E) is evident between 2010 and 2015, as is a migration away from the A340 (source: operational data from 

Heathrow, Gatwick and Manchester airports plus data from OAG). Hence we model the fuel-efficiency improvement in the 

LTA category, associated with a migration from the baseline fleet - via intermediate types - to a fleet composed entirely of 

“imminent” types, as commencing in 2010 rather than upon the first EIS of an “imminent” type. The duration of the transition 

is correspondingly longer as a result. 
65

  Although the A380 entered service in 2007, replacement of 747-400 aircraft from our baseline year-2010 fleet commenced 

(by definition) in year 2010. A380s already in service on UK routes by that time are accounted for in the next line of the 

table. 
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4.6 “Future” Aircraft – Approach Taken 

Unlike the transition from the baseline (year-2010) fleet to a fleet of “imminent” aircraft whose fuel-

efficiency characteristics and entry-into-service dates are already known in some detail, when we look 

at the transition from “imminent” to “future” aircraft types the situation is much less clear-cut and some 

judgement is required to arrive at a sensible set of assumptions.  

As explained in section 4.1, we consider four categories of “future” aircraft, covering narrow-body 

(NB), small-to-medium twin-aisle (SMTA), large twin-aisle (LTA) and very-large (VL) aircraft. We 

believe that this strikes an appropriate balance between complexity and simplicity, allowing us to 

capture the different timescales in which different categories of aircraft may reach the market, but 

without requiring an unduly complex model for which many parameter values would need to be 

determined. In particular we have subsumed turboprop and regional-jet aircraft into the NB category 

for the purposes of simplicity, given the relatively low materiality of those aircraft within UK aviation’s 

overall CO2 footprint. 

4.6.1 Definition of Aircraft Categories 

Firstly we must identify how the 10 aircraft categories we used to model the “baseline” to “imminent” 

fleet transition relate to the four aircraft categories we are using to model the “imminent” to “future” 

fleet transition. This turns out to be very simple and is set out in Table 6. 

 

baseline to “imminent”
66

 “imminent” to “future” 

B747-400, A380 VL 

LTA LTA 

SMTA SMTA 

757, A320, B737, TP, RJ, Other NB 

Table 6 – relationships between 1) the 10 aircraft categories used in modelling the 

baseline to “imminent” fleet transition, and 2) the 4 aircraft categories used in 

modelling the “imminent” to “future” fleet transition 

4.6.2 Materiality of Categories 

We must establish the relative materiality of the four aircraft categories in order to take account of the 

relative significance of fuel-efficiency improvements in different parts of the market. We do this by 

looking at the fuel-burn distribution in 2015 (the latest full year for which data are available) and 

assuming that this distribution will remain approximately constant. Significant hazards to this 

assumption’s validity, and their likely materiality, are as follows: 

 Constrained availability of airport landing-and-take-off slots may move demand towards larger 

aircraft. Conversely, opportunities to offer increased frequency of service may move airlines 

towards smaller aircraft. We assume for the purposes of our Road-Map that the relative fuel-

efficiencies of “future” aircraft in neighbouring size categories such as LTA and VL are broadly 

equivalent and that modest migration of demand from one category to an adjacent category 

will not introduce significant changes into the overall fuel-efficiency of the fleet once the 

transition from “imminent” to “future” aircraft is complete. There may however be small but 

material impacts on fleet-average efficiency during the transition period if the EIS dates of 

“future” aircraft in neighbouring categories differ substantially. This aspect has relevance 

                                                      
66

  The “other” category shown in Table 5 (which shows 2010 data) is of such low materiality that we could add it to any of the 

four categories without affecting the outcome. Its materiality in 2015 is significantly lower still. 
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because the transition from “imminent” to “future” aircraft types will still be underway in 2050, 

based on the EIS dates we have chosen (see APPENDIX F); 

 Battery electric aircraft may (in time) alter the landscape substantially, moving demand 

towards smaller aircraft for which electric propulsion will become feasible earlier than for larger 

long-range aircraft, and perhaps incentivising travel in a number of short-range segments 

rather than one non-stop flight. In such a scenario, one might see the relative materiality of 

LTA or VL aircraft decline as they remain dominant only on long over-ocean routes. Such a 

scenario could lead to a substantial reduction in the carbon-intensity of UK aviation, in which 

case our Road-Map might be viewed as unduly pessimistic regarding CO2 emissions from UK 

aviation. 

We do not take explicit account of the potential for migration of demand between aircraft categories, 

nor of the potential for significant decarbonisation from purely battery-electric flight. However, as 

subsequent sections describe, we do take account of potential improvements in fuel-efficiency due to 

the adoption of hybrid gas-turbine/electric propulsion systems.  

Table 7 shows the materiality assumption values used in our Road-Map model. 

 

Aircraft Category 
Materiality 

(based on year-2015 fuel-burn) 

NB 33.6 % 

SMTA 16.4 % 

LTA 28.0 % 

VL 22.0 % 

Table 7 – materiality of aircraft categories assumed in our “imminent” to “future” 

fleet transition. Scope: UK aviation. Source: SA analysis of data from OAG. 

4.6.3 Defining Within-Category Assumptions 

Our approach to defining within-category assumptions consists of several steps, carried out for each 

of the four aircraft categories. The application of this approach will be discussed in detail below; here 

we simply describe the method: 

1. We define a prototypical reference aircraft against which the efficiency of other aircraft will be 

compared. By definition the fuel-burn per passenger-kilometre of the reference aircraft is set at 

100%. In most cases the reference aircraft corresponds to a typical new aircraft available in 

the year 2000, and is therefore compatible with the definition of the ACARE FlightPath 2050 

goals
67

, a fact which we make use of in later steps. It is worth noting that the fuel-efficiency of 

the reference aircraft does not correspond to the fleet-average fuel-efficiency in our baseline 

year of 2010, since the latter arises from the use of a combination of aircraft types of widely 

varying vintages (some post 2000, some around 2000, some very much pre-2000). 

2. We define a representative “imminent” aircraft, whose entry-into-service (EIS) date and fuel-

efficiency relative to the corresponding “reference” aircraft are determined with reference to 

the actual aircraft types involved in the category. 

3. We identify the boundaries of the possible space of “future” aircraft characteristics, comprising 

their EIS dates and the fuel-efficiency improvement they offer relative to equivalent “imminent” 

aircraft. Specifically, we establish a “best” case and a “worst” case fuel-efficiency improvement 

relative to the corresponding representative “imminent” aircraft, as well as “earlier” and “later” 

                                                      
67

  See section 4.2.5 
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EIS dates spanning a region within which we consider the first availability of “future” aircraft to 

be likely. The space bounded by the four corners (“best-earlier”, “best-later”, “worst-later”, 

“worst-earlier”) defines a region outside which we consider the characteristics of “future” 

aircraft are very unlikely to sit. 

a. The “worst” case fuel-efficiency improvement (relative to the representative “imminent” 

aircraft) is that which we believe a new “future” aircraft must meet to be considered a 

commercially viable proposition. 

b. To identify the “best-case” fuel-efficiency improvement, we make use of the FlightPath 

2050 technology targets (see section 4.2.5). These call for technology and 

procedures enabling a 75% reduction in CO2 per passenger kilometre, relative to a 

typical new aircraft from year 2000, to be available by 2050. We take the view that this 

would enable an aircraft embodying such technologies to enter service from 2055 (5 

years being a typical time lag from TRL6
68

 to EIS
69

). We further assume that 10% of 

the 75% target improvement is delivered by improved operational practices and air-

traffic management
70

, leaving aircraft fuel efficiency to deliver a 72.2% improvement
71

. 

We then construct a trajectory (characterised by a constant annual rate of fuel-

efficiency improvement) from the reference aircraft to the 2055 EIS fuel-efficiency 

target for a FlightPath2050-compliant aircraft. Using our “earlier” and “later” EIS dates, 

we can then read from that trajectory corresponding fuel-efficiencies relative to the 

reference aircraft. These can if necessary be restated relative to the representative 

“imminent” aircraft.  

4. We define an EIS date for our “future” aircraft. In most cases, it is simply the midpoint between 

the “earlier” and “later” dates defined in the above step. We also make a judgement 

concerning how many years after EIS it will take for the “future” aircraft to displace 

corresponding “imminent” aircraft from the fleet to an extent such that any remaining 

“imminent” aircraft are no longer material for UK aviation CO2. 

5. To establish a “central” case for the fuel-efficiency of the “future” aircraft relative to the 

corresponding representative “imminent” aircraft, we apply a similar methodology to that used 

in our 2012-Road-Map, namely to assume an underlying rate of fuel-efficiency improvement 

over time, supplemented by a step-change to represent the deployment of one or more 

technologies or design configurations which offer a significant improvement in performance 

(and which are discussed in section 4.10 below). The assumed fuel-efficiency of the “future” 

aircraft relative to the corresponding representative “imminent” aircraft thus depends upon the 

size of the step-change, the annual rate of underlying improvement, and the number of years 

between EIS of the two aircraft types. 

6. We can then “sense-check” the proposed characteristics of the “future” aircraft with reference 

to 1) previous rates of progress in fuel efficiency (e.g. between the “reference” aircraft and the 

representative “imminent” aircraft), 2) our bounding-box (being certain that it lies well within 

the box), and 3) other external calibration points, in order to place it in some form of context. 

                                                      
68

  TRL = technology readiness level. TRL6 = fully functional prototype demonstrated in a representative environment. See for 

example https://www.nasa.gov/directorates/heo/scan/engineering/technology/txt_accordion1.html 
69

  EIS = entry into service 
70

  Note that our Road-Map assumption of 8.7% CO2 reduction from improved ATM and operations is lower than the 10% 

assumed here. If we were to assume 8.7% rather than 10% in the present calculation, the resulting aircraft fuel-efficiency 

improvement required to reach the FlightPath2050 goal would be correspondingly larger.  
71

  A 10% improvement in fuel-efficiency from improved ATM and operations corresponds to reducing fuel-burn per passenger-

kilometre by a factor of 0.9. Similarly, a 72.22% efficiency improvement from aircraft corresponds to a factor of 0.2777. The 

combined effect is 0.2777*0.9 = 0.25 i.e. a 75% reduction in fuel-burn per passenger kilometre, consistent with the 

FlightPath 2050 target. 
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4.6.4 Combining Categories 

Finally, we can use the above information to determine the impact upon fleet fuel-efficiency due to the 

transition from “imminent” aircraft types to “future” aircraft types, taking account of the incompleteness 

of that transition by 2050.  

4.7 “Future” Aircraft – Assumptions by Category 

APPENDIX F sets out the derivation of the assumptions we have employed in our Road-Map model 

for the fuel-efficiency and entry-into-service dates of “future” aircraft. A summary is given in Table 8. 

 

Category EIS 

Central case: 

Fuel-efficiency % improvement vs… Central case: 

Fuel-burn per ASK vs 

“reference” aircraft …representative 

“imminent” aircraft 

…“reference” 

aircraft 

NB 2035 28.9 44.2 55.8% 

SMTA 2035 34.6 45.9 54.1% 

LTA 2035 32.8 49.6 50.4% 

VL 2040 40.3 55.2 44.8% 

Table 8 – characteristics of “future” aircraft (central case) used in the Road-Map 

model. 

4.8  “Future Aircraft” - Sense-Check and Context 

APPENDIX G explores the relationship between our central case assumptions and technology 

development goals set by NASA (N+2, N+3) and by ACARE (FlightPath2050). We conclude that while 

our central case represents an increase in the average annual rate of new aircraft fuel efficiency 

improvements relative to that observed in the past two or three decades, nonetheless it is substantially 

less ambitious than the rate of improvement required to reach the NASA N+2/N+3 goals or the 

FlightPath2050 goal. As such our assumptions lie well within the level of ambition being targeted by 

the industry. 

Furthermore, [ICCT, 2016] takes the view that “the fuel consumption of new aircraft can be reduced by 

approximately 25% in 2024 and 40% in 2034 compared with today’s aircraft by deploying emerging 

cost-effective technologies. The latter value….may be conservative because of the modeling 

assumptions used and the exclusion of non-conventional airframes like blended wing body or strut-

based wings.” 

Our assumptions (set out in Table 8) for new aircraft fuel-efficiency in 2035-2040, relative to our 

“reference” aircraft, involve higher percentage savings than those suggested by [ICCT, 2016], but we 

do not exclude non-conventional airframe configurations. 

It is worth considering what factors may allow the rate of efficiency improvement to be accelerated 

relative to that observed in recent decades. Firstly, customer demand for more efficient products 

continues to strengthen, driven by the cost of fuel and potentially by additional carbon costs. Secondly, 

analysis, simulation and design tools continue to improve, giving the industry greater capability with 

which to address that customer demand. Thirdly, a number of technologies representing opportunities 

for a step-change improvement in fuel efficiency have been demonstrated and are progressing well 

through their development phases. Finally, a number of aircraft concepts have been proposed which 

are claimed to have the potential to achieve fuel-efficiency levels at or close to the NASA N+3 and 

FlightPath 2050 goals, which are substantially more ambitious than our assumed levels of efficiency 

for “future” aircraft. 
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Section 4.10 explores the upcoming technologies which may contribute towards enabling our 

assumed levels of fuel-efficiency to become reality. 

4.9 “Future” Aircraft – Impact on Fleet Fuel Efficiency 

In this section we take the central-case fuel-efficiency improvement assumptions set out in the 

previous section for each aircraft category and combine them, taking account of the category-specific 

materiality set out in section 4.6.2, to give a view of their combined impact on fleet fuel efficiency, 

both at 2050 (when the transition will be incomplete) and later when the fleet transition is complete. 

There will be substantial improvement in fleet fuel efficiency after 2050 as the “imminent”-to-“future” 

transition continues, enabling aviation to play its part in the UK’s efforts to decarbonise further beyond 

2050. Although outside the scope of our Road-Map, subsequent generations of aircraft (beyond our 

“future” generation) can be expected to offer even greater reductions in carbon-intensity. 
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Category 

Improvement 

Within-category CO2, relative to pre-transition 

Transition Complete 

(after 2050) 

2050 (Transition only 

partially complete) 

Start 
Period 

(years) 
%

74
 Factor P

75
 

CO2 
P 

CO2 

Imminent Future Imminent Future 

NB 2035 25 0.336 28.9 0.711 1.0 0 0.239 0.6 0.134 0.143 

SMTA 2035 20 0.164 34.6 0.654 1.0 0 0.107 0.75 0.041 0.080 

LTA 2035 20 0.280 32.8 0.672 1.0 0 0.188 0.75 0.070 0.141 

VL 2040 20 0.220 40.3 0.597 1.0 0 0.131 0.5 0.110 0.066 

  Improvement factor 0.666  0.786 

  Improvement % 33.4 %  21.4 % 

Table 9 – impact on fleet efficiency of “future” aircraft (central case) replacing 

“imminent” aircraft, shown for 2050 (fleet transition incomplete) and a later date 

when fleet transition is complete. Scope: UK aviation. 

4.10 “Future” Aircraft Efficiency – Enabling Technologies 

Section 5.2 of our 2012 CO2 Road-Map explores in detail the opportunities for improving the efficiency 

of future aircraft types. In the present document we explore some recent developments along the 

route to improved efficiency. This section is intended to supplement, rather than replace, the 

corresponding section of our 2012 Road-Map. Illustrating the scale of the technology development 

effort within the aerospace industry, [ATAG, 2016] reports that “aircraft and engine manufacturers 

spend an estimated $15 billion each year on research and development”. 

[NAP, 2016] discusses the NASA N+3 goals in which the "the energy reduction goal is 60-70 percent 

better than the reference 1990s design aircraft for similar missions". It goes on to say that "Several 

organizations and teams have published designs that they claim have the potential to meet these 

goals given sufficient investment. All require innovation in aircraft design..., in propulsion, and in 
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  Source: APPENDIX F 
73

  Based on 2015 fuel-burn and hence CO2. Source: Table 7 
74

  Central case. Source: Table 8 
75

  P = proportion of aviation activity within the size category that is delivered by “future” aircraft”, with the remainder (1-P) 

being delivered by “imminent” aircraft. P is a measure of the extent to which fleet transition is complete, and depends upon 

the EIS date, the duration of the fleet transition period, and the point in time at which P is evaluated. Post-transition, P is by 

definition 1.0. At 2050, P<1.0. 
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aircraft–propulsion integration”. We explore each of those three subject areas below, along with 

developments in manufacturing technology which act as enablers for bringing future concepts to 

reality in a cost-effective and commercially-viable manner. 

4.10.1 Aircraft Technologies and Configurations 

One method of improving aircraft fuel-efficiency is to increase the aspect ratio of the wing. However, 

with a conventional cantilever wing arrangement there are limits to how far this approach can be 

pursued. One potential solution is to use a “truss-braced wing” (TBW) in which the wing is supported 

part-way along its length by a strut which carries part of the load to the fuselage, allowing the wing to 

be made longer and thinner. Wind-tunnel testing by Boeing and NASA has shown the supported wing 

arrangement can reduce fuel use “by 5 to 10 percent over advanced conventional wings”
76

. The TBW 

arrangement requires that the wing is mounted to the top of the fuselage, rather than to the bottom of 

the fuselage as is common in many modern commercial aircraft. The top-mounted wing is more suited 

to the accommodation of very high bypass ratio engines (characterised by a large diameter relative to 

lower bypass ratio equivalents of equivalent thrust), offering further advantages related to increased 

propulsion system efficiency. 

In 2016, Boeing and NASA conducted wind-tunnel tests
77

 of a scale model Blended Wing Body (BWB) 

aircraft – a configuration that could offer substantially improved fuel-efficiency relative to a 

conventional “tube-and-wings” aircraft configuration. 

Boeing’s ecoDemonstrator Program
78

 serves as a catalyst for engineering innovation and learning, 

using flying test beds to accelerate new technologies. By the end of 2015, the ecoDemonstrator 

Program had tested more than 50 technologies using three airplanes: 

 ecoDemonstrator 737 flight tests began in 2012, testing 15 technologies including variable 

area fan nozzle and flight trajectory optimisation, and validating “additional aerodynamic 

performance of natural laminar flow technology on the new 737 MAX Advanced Technology 

Winglet”
79

. 

 ecoDemonstrator 787 flight tests began in 2014. More than 25 technologies were tested, 

many of them targeting improved fuel efficiency, such as a ceramic matrix composite (CMC) 

engine nozzle; aerodynamic and flight control improvements; wireless sensors; and “software 

applications and connectivity technologies that can improve flight planning, fuel-load 

optimization, in-flight routing and landing”
80

. NASA also tested its Airborne Spacing for 

Terminal Arrival Routes (ASTAR), a technology which “is intended to increase landing 

frequency and reduce holding patterns, saving fuel, emissions and time”
81

. 

 ecoDemonstrator 757 took place in 2015, in collaboration with TUI Group and NASA. The 

757’s left wing tested “technologies to reduce environmental effects on natural laminar flow as 

a way to improve aerodynamic efficiency, including a Krueger shield to protect the leading 

edge from insects”
82

. “On the 757’s right wing, NASA tested “bug-phobic” coatings that can 

reduce drag from insect residue”
83

. “On the vertical tail, NASA and Boeing tested active flow 

control to improve airflow over the rudder and maximize its aerodynamic efficiency”
84

, which 

may enable smaller vertical tail designs in the future. Also tested was “solar and thermal 
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77
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"energy harvesting" to power electronic dimmable windows, as a way to reduce wiring, weight, 

fuel use and carbon emissions”
85

, as well as 3D printed components made from excess 

carbon fibre from 787 production, reducing airplane weight and factory waste. 

 A further ecoDemonstrator program is planned for 2016, using an Embraer E170 prototype 

airplane.  

During 2014-15, NASA conducted flight tests to demonstrate “Adaptive Compliant Trailing Edge 

(ACTE) flight control surfaces that offer significant improvements over conventional flaps used on 

existing aircraft”
86

. The technology may enable reduced wing structural weight and aerodynamic 

improvements, leading to reduced fuel-use. 

NASA’s New Aviation Horizons
87

 document sets out a 10-year plan, starting in 2017, to flight test “new 

technologies, systems and novel aircraft and engine configurations”, including propulsion-airframe 

integration, hybrid wing-body, and truss-braced wing,  

Fuel cells produce electricity in a cleaner, more efficient way than combustion engines, and their use 

can be envisaged to power an airliner’s cabin and systems, replacing the gas-turbine-based auxiliary 

power unit (APU). Furthermore, the exhaust of a hydrogen-powered fuel-cell is primarily water which 

can be used for the aircraft’s water and waste system (in place of water carried all the way from the 

departure airport), saving weight and therefore reducing fuel consumption and emissions. Fuel cells 

could also displace APU usage from other functions such as main engine start and air conditioning, 

paving the way towards emissions-free ground operations. In 2008, Airbus and its partners DLR and 

Michelin performed flight evaluations of a fuel cell emergency power system on a test bed A320
88

. The 

fuel cells for commercial aviation are at an early stage of research and technology. 

In Europe, the Smart Fixed Wing Aircraft (SFWA) integrated technology demonstrator will develop and 

validate technologies with the aim of reducing aircraft drag by 10% through the use of laminar flow 

employing both passive and active flow control
89

. The BLADE project
90

, led by Airbus and involving an 

additional 16 partners, is a flight test demonstrator programme - due to begin in 2017 using an Airbus 

A340-300 flight test aircraft - which aims to show that wings smooth enough to sustain drag-reducing 

natural laminar flow (NLF) can be manufactured and maintained economically. 

There may be further advantages for fuel efficiency associated with designing aircraft to travel slightly 

slower (as discussed in section 5.2.5 of our 2012 Road-Map). However, requirements for continued 

compatibility with existing airport landing and take-off slots may limit the deployment of such aircraft. 

4.10.2 Propulsion Technology 

Section 5.3 of our 2012 CO2 Road-Map gives an overview of the technology options and research 

programmes which could contribute towards improved engine fuel efficiency. In this section we cover 

some additional items not reported in that earlier document, and report on recent developments. 
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viewed 11
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 Oct 2016 

Figure 4 – progress in fuel efficiency 

within the Trent engine family.       

Image – Rolls-Royce. 
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In 2014, Rolls-Royce shared details of its next generation 

engine designs
91

. “The first design, Advance, will offer at least 

20 per cent better fuel burn and CO2 emissions than the first 

generation of Trent engine and could be ready from the end of 

this decade. The second, UltraFan™, a geared design with a 

variable pitch fan system, is based on technology that could be 

ready for service from 2025 and will offer at least 25 per cent 

improvement in fuel burn and emissions against the same 

baseline”. The engine designs feature composite 

carbon/titanium (CTi) fan blade technology which delivers 

lighter fan blades while retaining aerodynamic performance. 

Combined with a composite engine casing, it forms a system 

that reduces weight by up to 1,500lb per aircraft, the equivalent 

of carrying seven more passengers at no cost. The engine 

designs also feature higher pressure ratios than existing 

engines. Research programmes such as LEMCOTEC
92,93

 have 

researched engine core technologies, including those 

supporting higher pressure ratios, to enable a 20-30% 

reduction in CO2 emissions vs year 2000, while projects such 

as ENOVAL
94

 are exploring enablers for higher engine 

efficiency through ultra-high bypass ratios. 

Looking further ahead, the ULTIMATE
95

 project, running 

2015-2018 and bringing together European universities, 

research centres and aero-equipment industry partners, will explore a range of more radical engine 

core technologies
96

 with the aim of identifying the most promising concepts for more detailed study in 

the future. The ambition is to reduce key sources of efficiency loss enabling a greater than 18% 

reduction in fuel burn
97

 relative to a year 2050 reference configuration. Although this clearly lies 

beyond the time horizon of our Road-Map, it illustrates that there is potential for further substantial 

efficiency improvements to be achieved in generations of aircraft following on from those we have 

considered above.  

The prospect of hybrid-electric propulsion for aircraft has moved forward considerably since our 2012 

Road-Map was published: 

 In 2013, Rolls-Royce and EADS (now Airbus) presented E-Thrust
98

, a new concept for future 

airliners, featuring a serial hybrid propulsion system comprising a single large gas-turbine, an 

advanced energy storage system, and six electrically driven fans. “During climb the distributed 

fans draw power from the energy storage system, but during descent, they act like wind 

turbines to generate electrical energy which re-charges the batteries…..A major benefit of the 

distributed propulsion system is that it can be integrated into the airframe's structure to 

maximise aerodynamic efficiency and optimise the airflow around it. This reduces the aircraft's 

weight, drag and the amount of noise it makes.”
99
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  http://www.rolls-royce.com/media/press-releases/yr-2014/260214-next-generation.aspx, viewed 31
st
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 August 2016 
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 Boeing’s SUGAR
100

 Volt concept aircraft has a hybrid electric propulsion system which allows 

for “typical short-range flights to use mostly electric power while keeping a supply of jet fuel on 

board for longer-range flights"
101

. 

 Among the technical challenges to be explored within NASA’s Advanced Air Transport 

Technology (AATT) project
102

 are hybrid propulsion systems and compact high-OPR
103

 gas 

generators. 

 [NAP, 2016] considers “propulsion and energy system technologies that could reduce CO2 

emissions from global civil aviation” and identifies four highest-priority research areas, 

including “Improvements in gas turbine engines” and “Development of turboelectric propulsion 

systems”. 

While pure battery-electric propulsion for large commercial airliners is unlikely to see service for many 

decades, nonetheless significant progress in this area is being made: 

 In 2015, the Airbus E-Fan technology demonstrator programme completed a manned crossing 

of the English Channel using an all-electric aircraft. The E-Fan 2.0 is planned "to be the 

world’s first all-electric plane certified to international airworthiness standards...scheduled to 

take its maiden flight in late 2017"
104

. The E-Fan Plus “incorporates an internal combustion 

engine as a range extender in addition to the aircraft’s on-board lithium-ion batteries.”
105

 

 NASA’s Sceptor experimental aircraft is modified from a standard small aircraft to allow 

experimentation with electric propulsion and direct performance comparisons between the 

modified (electric-powered) aircraft with the standard, unmodified aircraft
106

.  

 NASA’s X-57 electric research plane (known as “Maxwell”) is intended to explore the benefits 

of “distributing electric power across a number of motors integrated with an aircraft” with the 

hope of demonstrating “a five-time reduction in the energy required for a private plane to 

cruise at 175 mph”
107

. 

4.10.3 Integration of Propulsion System and Airframe 

Consideration of how the engine and airframe are integrated will become increasingly important in the 

coming years as the industry drives for reduced drag and noise and increased efficiency. In the US, 

[NAP, 2016] identifies “advances in aircraft–propulsion integration” as being one of four highest-priority 

research areas for reducing global civil aviation CO2. In the UK the Aerospace Integration Research 

Centre (AIRC)
108

, being built at Cranfield University with co-investment partners Airbus and Rolls-

Royce, is due to open at the end of 2016 and will focus on technology development and testing up to 

high technology readiness levels. 

Integration of engine and airframe is essential to enable key efficiency improvements such as 

boundary layer ingestion (BLI), in which the engine is sited close to the aircraft structure and is able to 

ingest air that the aircraft has already slowed down (through for example skin friction), thus reducing 

                                                      
100

  SUGAR = Subsonic Ultra Green Aircraft Research 
101
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the disadvantageous inlet momentum of air entering the engine. Successful implementation of BLI 

may offer fuel-efficiency improvements of several per cent. 

Examples of technical projects and/or aircraft concepts aimed at enabling or taking advantage of BLI 

include: 

 Bauhaus Luftfahrt’s “Propulsive Fuselage” concept, which uses a propulsive fan encircling the 

aft section of the aircraft fuselage and driven by a co-located gas turbine engine, was shown 

in initial analyses to offer some 10% improvement in range relative to an equivalent twin-

engined aircraft, even after the weight of the third engine is taken into account
109

. The 

collaborative project "DisPURSAL"
110

 explored this and other arrangements aimed at making 

use of boundary layer ingestion.  

 NASA’s Advanced Air Transport Technology (AATT)
111

 project includes in its scope the 

exploration and development of technologies for distortion-tolerant fans, a crucial enabler for 

many BLI arrangements in which the engine experiences spatially non-uniform inlet flow 

characteristics. 

 NASA’s Starc-ABL
112

 concept uses an electrically-driven aft-fuselage mounted BLI fan, 

powered by electrical generators attached to conventional underwing gas turbine engines. 

 The D8 “Double Bubble”
113

 concept uses two rear-mounted engines which ingest boundary 

layer air from the top of the aircraft’s fuselage.  

 The use of distributed electrical propulsion, whether hybrid or pure-electric, acts as an enabler 

for boundary layer ingestion, by making possible the positioning and sizing of propulsive fans 

so as to maximise the possibilities for ingestion of slow-moving boundary layer air.  

4.10.4 Manufacturing Capability 

Advanced manufacturing technologies not only open up new design opportunities leading potentially 

to improved product performance, but they also form a critical element of lowering unit cost, making 

aerospace products more affordable and enhancing the viability of aircraft or engine concepts which, 

without suitable manufacturing technologies, might not see the light of day as commercial products. 

A key manufacturing technology receiving much research attention at present is additive layer 

manufacturing (ALM), sometimes referred to as 3D printing. ALM offers the prospect of manufacturing 

components of entirely new shapes which were previously not possible to make, opening up the 

design space and presenting opportunities for weight reduction which is one of the key enablers for 

improved aircraft fuel-efficiency. Components in which material properties vary from one area of the 

component to another can also be envisaged using ALM. 

For example, Airbus has used ALM, working with a new material entitled Scalmalloy® specially 

designed for use with 3D printing, to manufacture a prototype cabin partition with a structure "created 

with custom algorithms that generated a design that mimics cellular structure and bone growth"
114

. 

This enables the required strength of the component but saves 45% of the component’s weight. 
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Composite materials based on carbon fibre or glass fibre have seen increasing use in aircraft in recent 

decades. Aircraft such as the Boeing 787 or the Airbus A350 XWB feature a high percentage of such 

materials. For future aircraft, NASA is developing a method of “sewing together layers and rods of 

composite material” which could allow entirely new aircraft shapes to be built
115

. 

4.10.5 Discussion 

This section has set out some examples of the technologies and design configurations being explored 

for potential use in future aircraft types. The scope for improving aircraft fuel-efficiency through 

deploying various combinations of these technologies and design configurations is substantial. 

The UK has a strong aerospace manufacturing sector, underpinned by high levels of technological 

capability built on decades of research. The UK Government must ensure that access to funding for 

high-value collaborative R&D programs is maintained in the coming years, to ensure continued 

competitiveness in the global market. 
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5 Sustainable Aviation Fuels 

SUMMARY 

We retain the view, expressed in our 2012 Road-Map, that by 2050 sustainable aviation fuels 

(SAF) will offer between 15% and 24% reduction in CO2 emissions from UK aviation. This 

assumption is based on a 25-40% penetration of SAF into the global aviation fuel market, 

coupled with a 60% life-cycle CO2 saving per litre of fossil-based aviation fuel displaced. For 

the purposes of our CO2 Road-Map, we assume as our central case an 18% reduction in CO2 

emissions from UK aviation through the use of SAF. 

We are encouraged by the recent Government consultation on the inclusion of aviation in the 

Renewable Transport Fuel Obligation in the period to 2030. We urge the Government to 

introduce binding legislation and to provide clear long-term policy as soon as possible. We are 

concerned that some promising sustainable fuels technologies are not recognised in the 

proposals.  This could mean that opportunities to build sustainable fuels production into 

existing UK manufacturing facilities would be missed. 

Unlocking the full potential for UK production and deployment of sustainable aviation fuels 

requires Government to develop a UK vision and strategy for their deployment, for the creation 

of UK expertise and technologies; implementing financial support mechanisms for both 

commercial-scale and demonstration facilities and ensuring that aviation fuels are prioritised 

in future research and development. With policy support, SAF production in the UK could 

provide gross added value to the UK economy of £265m by 2030. UK manufacture of SAF 

would reduce the UK’s dependency on jet fuel imports which now make up more than 70% of 

UK volumes.  

5.1 Introduction 

Traditionally, fossil fuel has dominated aviation and other forms of motorised transport, as well as 

electrical power generation. While the use of Sustainable Aviation Fuels (SAF) does not necessarily 

reduce so-called “tail-pipe” emissions of CO2, it does offer the prospect of significantly reducing the 

associated CO2 emissions over the fuel’s full life-cycle. For example, production of biofuels involves 

absorption of CO2 from ambient air to produce the feedstock from which the fuel is derived. A number 

of technologies are under development that are able to convert waste gases, liquids and solid 

materials into transport fuels and these also yield life-cycle CO2 reductions. Compared with fossil-

based aviation fuels, sustainable aviation fuels typically reduce life-cycle CO2 emissions between 60-

95%
116

, as well as reducing emissions of particulates. 

Unlike light-duty ground transport or power generation, aviation is likely to remain dependent on liquid 

hydrocarbon fuels for many decades and therefore the development of sustainable aviation fuels to 

meet this need should be a priority of government policy. [NAP, 2016] lists “advances in sustainable 

alternative jet fuels” as being one of four high-priority approaches to the reduction of CO2 emissions 

from commercial aviation. 

Since our 2012 CO2 Road-Map [SA, 2012], SA has completed a Sustainable Fuels Road-Map [SA, 

2014b] comprising a detailed study of the potential for SAF to contribute to the mitigation of UK 

aviation CO2 emissions (see Figure 5). Scenario analysis estimated that in 2030 there may be 90-160 

operational sustainable fuel plants globally, producing aviation fuels in combination with other fuels 

and products. Global revenue for these sustainable fuel plants was estimated to be £8-17 billion in 

2030. The study concluded that the estimate used in the 2012 CO2 Road-Map was appropriate, 

provided that policy support is given to assist aviation to decarbonise alongside other sectors. 
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To be acceptable for use in aviation, any candidate SAF must be technically suitable for use in 

existing fuel-systems and engines (in other words it must be a “drop-in” replacement for fossil-based 

aviation fuel), it must meet strict criteria concerning sustainability, and it must have the longer term 

potential to be produced in a large-scale commercial environment and to compete on price with 

conventional fossil-based aviation fuel. These issues are explored in more detail below. 

 

 

Figure 5 – “high” scenario for UK potential of sustainable fuels. Source: [SA, 

2014b] 

5.2 Progress Since 2012 

5.2.1 Certification of new fuels 

Equipment manufacturers, bioenergy/oil companies and the US government have continued to invest 

in testing to ensure that the pace of technological progress in certifying new aviation fuel production 

methods has not slowed. The ASTM international fuel specification ASTM D1655 covers the approval 

of all new production pathways. The latest aviation fuel production pathway to be approved is Alcohol 

to Jet Synthetic Paraffinic Kerosene (ATJ-SPK). Created from isobutanol, an alcohol that can be 

manufactured from feed stocks such as sugar, corn or waste woody biomass, this brings the number 

of approved production pathways for synthetic aviation fuels to five, including: ATJ-SPK, Synthesized 

Iso-paraffins (SIP), Hydro-processed Esters and Fatty Acids Synthetic Paraffinic Kerosene (HEFA-

SPK), Fischer-Tropsch Synthetic Paraffinic Kerosene (FT-SPK) and Fischer-Tropsch Synthetic 

Kerosene with Aromatics (FT-SKA). All can use a variety of renewable or waste-derived feedstocks. In 

addition to these certified technology pathways, a further six production options are being assessed 

within the ASTM D4054 approval process. Although the US government has reduced funding for some 

research and testing of new types of SAF, a number of measures are being taken to streamline future 

fuel certification, so we do not anticipate that this will lead to any measureable decrease in the 

adoption by aircraft operators of SAF. 

ASTM D1655 and the UK’s Ministry of Defence standard DEF STAN 91-091 are the petroleum 

industry and global reference standards for aviation fuel. DEF STAN 91-091 has a mechanism to 
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implement the ASTM fuel approval for use in the UK, Europe and around the world. The development 

of this standard is necessary to keep pace with technological improvements, and ongoing support 

from the UK MOD is essential to ensure that the UK does not lag behind other countries. 

5.2.2 Progress towards commercialisation 

Since 2012, there has been considerable progress in the use of SAF by commercial airlines, with over 

3,000 flights having taken place. Oslo and Los Angeles airports both have a regular supply of SAF 

which is purchased by a number of carriers. In the USA a number of new technologies have received 

support from the US government to construct initial demonstration plants. 

However, barriers to wider-scale adoption of these fuels still exist. SAF is currently more expensive 

than fossil-based aviation fuel and few governments provide incentives for their production or use. 

Both the USA and the Nordic region do provide support for the development of SAF technologies and 

also provide a level playing field for SAF to qualify for incentives, alongside sustainable road-transport 

fuels. This has greatly assisted the creation of SAF supply chains in those regions. However, the 

ongoing low oil price and the uncertainty in long-term policy support for renewable technologies both 

contribute to a lack of investor confidence in the sector and this has prevented more innovative 

technologies reaching commercial scale. 

The assumptions in our Sustainable Fuels Road-Map [SA, 2014b] are based on a policy framework 

that provides equivalence for aviation and road transport fuels in future incentive mechanisms. As 

ICAO’s recently-agreed Global Market-Based Measures (GMBM) scheme
117

 will recognise the use of 

SAF in meeting the climate obligations of the airlines, there will hopefully be more opportunities for 

airlines to fuel their aircraft with SAF at key hubs around the world. ICAO is working to identify policy 

support mechanisms that could be used to provide greater investment in SAF. We acknowledge the 

work done so far by the UK government to address this issue and we welcome the recently-launched 

consultation on proposals to incorporate SAF into the longer-term policy framework for UK transport 

fuels. 

5.2.3 Emerging new technologies 

To some extent, even technology pathways that have been approved for some years can still be 

considered as emerging technologies. This is especially true of the waste-to-fuels routes where, 

although the individual technology components exist today in commercial plants, there is still no large-

scale integrated plant in operation globally. There is a need for ongoing support from the research and 

development community to assist in overcoming remaining technical challenges associated with 

manufacturing processes. Within the UK’s research councils, a number of programmes address future 

energy challenges and we encourage a greater focus on aviation, where presently limited options for 

low carbon solutions exist. 

In the medium term, fuels derived from waste CO2 and algal biomass may provide greater 

opportunities but, in our view, hydro-treated waste oils, cellulosic conversion routes (mainly using 

wastes) and conversion of carbon monoxide will provide the main volumes in the aviation sector over 

the next 10 years. 

In the long-term, short-haul aircraft may move to electrical propulsion systems (see discussion in 

section 4.10.2). However, long-haul aircraft will continue to operate on liquid hydrocarbons for many 

decades, and within UK aviation those aircraft account for the biggest fuel volumes, so demand for 

SAF is expected to extend well beyond 2050. In the longer-term, disruptive technologies may provide 

much greater volumes of fuels. There are a number of technologies using biotechnology and 

renewable energy (e.g. solar) that have shown some promise at lab scale. Many of these are capable 

of reprocessing CO2 from industrial processing and some have been demonstrated using CO2 
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extracted from ambient air
118

. Our Sustainable Fuels Road-Map [SA, 2014b] did not build any of these 

still nascent technologies into its future projections. 

5.3 Sustainability 

In our Sustainable Fuels Road-Map [SA, 2014b], when assessing the potential for SAF to displace 

fossil-based aviation fuel, we defined the following sustainability principles which the feedstock/fuel 

must meet. SAF should: 

 not displace or compete with food crops or cause deforestation; 

 minimise impact on biodiversity; 

 produce substantially lower life cycle emissions than fossil fuels; 

 be sustainable with respect to land, water and energy use; 

 deliver positive socioeconomic impacts. 

SA members support the Roundtable on Sustainable Biomaterials standard
119

 as the most robust 

standard for assessing the sustainable development of fuel production. 

In the period since our 2012 CO2 Road-Map, concerns over the sustainability of road transport fuels 

have remained. SA has supported the UK Government’s Transport Energy Taskforce that assessed 

the introduction of greater volumes of advanced fuels in the UK’s transport energy mix. The main 

advantage of advanced fuels is the ability to process low value wastes and residues, hence avoiding 

the land use concerns associated with crop based fuels. SA is supportive of policy mechanisms that 

ensure that the Indirect Land Use Change (ILUC) of these fuels is addressed and mitigated. 

Some technologies are based on the biological capture of carbon monoxide rich waste gases from 

industries such as steel making, using fermentation to make ethanol. This can be converted to “drop–

in” jet fuel with a 65% GHG reduction
120

 compared to fossil alternatives. By recycling waste carbon for 

a secondary purpose, this technology presents an opportunity to keep more fossil resources in the 

ground and to help contribute to meeting climate change commitments. It is important to ensure that 

emerging regulation recognises carbon emission reductions generated by recycling carbon rather than 

solely focusing on fuels produced directly from plant biomass. We have significant concerns that 

innovative aviation fuel technologies that meet sustainability criteria and result in overall carbon 

reductions will not be exploited in the UK due to regulations being centered on using only plant 

feedstocks to produce fuel. This means that opportunities for building sustainable fuel technology into 

existing UK manufacturing facilities will be missed unless we act now. 

The UK Government and aviation industry have a role to ensure that global aviation policy frameworks 

address the issue of sustainability and that sustainable fuels are incorporated into global climate 

change policy for aviation. However, most importantly there is the need to ensure that approaches to 

sustainability are harmonised or as a minimum there is a mechanism for mutual recognition of 

sustainability standards. This factor could present a significant barrier to the uptake of SAF within the 

future global market based measure. 
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5.4 Potential for Sustainable Aviation Fuels – Risks and Opportunities 

5.4.1 Economics of SAF 

At this time, technological pathways using low value wastes and residues are not at commercial scale 

and incentive mechanisms do not exist for the deployment of SAF. Therefore, uptake levels for 

commercial flights remain low. Sustainable production of sufficient amounts of feedstock at lower cost 

is key to the deployment of SAF at a commercial scale. Realising a substantial contribution towards 

the accomplishment of the aviation industry’s climate goals from sustainable aviation fuels requires 

significant investment and governmental support. A number of airlines have started to invest in SAF 

production to address this market failure, but further policy support will be essential to make 

meaningful volumes available. 

The economics of SAF production are presently unfavourable. With limited policy support frameworks 

in place, the shift to commercial production remains challenging in the near term. Although prices of 

fossil-based aviation fuel are expected to increase over the longer term, ongoing market volatility 

presents significant challenges for the price-competitiveness of SAF. Uncertainty for investors in 

renewables incentives and a lack of longer term policy support also deters investment in large scale 

production. 

However, the introduction of SAF into ICAO’s GMBM will hopefully prompt more governments to 

provide policy support for the production of these fuels. In future, the application of carbon pricing in 

global economies, combined with increasing costs of carbon, will help to bridge the price gap between 

fossil-based aviation fuel and SAF, by enabling greater numbers of projects to move from 

demonstration to commercial scale. This will lead to lower production costs due to economies of scale, 

technology learning, and the ability to use lower quality feedstocks. 

5.4.2 Scale up and Deployment – UK Opportunities 

In the analysis undertaken for our Sustainable Fuels Road-Map [SA, 2014b], it was estimated that by 

2030 there may be 90-160 operational sustainable fuel plants globally, producing aviation fuels in 

combination with other fuels and products. Global revenue for these sustainable fuel plants was 

estimated to be £8-17 billion in 2030. SA believes that the UK should capitalise on its leadership in 

global aerospace and aviation and take the opportunities presented by the emerging sustainable fuel 

market to reduce emissions, create jobs and bolster investments in science and technology. 

Sustainable fuels will be essential in meeting the climate challenges for aviation in the period to 2050, 

as part of a portfolio approach alongside substantial improvements in fuel efficiency, air traffic 

management and operational procedures. As road transport shifts away from liquid hydrocarbon fuels, 

the UK has an opportunity to build on its strengths in refining technologies, waste handling and 

processing and in bioscience to build a new sector, providing not only high value aviation fuels, but 

also other high value fuels and chemicals. 

In order to unlock the potential for UK production and deployment, the UK should: 

 Develop a UK vision and strategy for the deployment of SAF and the creation of UK expertise 

and technology; 

 Ensure that innovative new technologies are recognised in future incentive mechanisms; 

 Ensure that financial support mechanisms are in place to address problems in accessing 

finance for commercial and demonstration facilities; 

 Ensure that future policies include aviation fuels in incentive frameworks; 

 Ensure that aviation is addressed in future research and development priorities, from 

fundamental research through to support structures that will lead to the creation of commercial 

volumes of fuel. 
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5.5 Assessment of Potential Mitigation Impact 

Our assessment is unchanged from our 2012 CO2 Road-Map, namely that by 2050 SAF could offer 

between 15 and 24% reduction in CO2 emissions attributable to UK aviation by 2050. This assumption 

is based on a 25-40% penetration of SAF into the global aviation fuel market, coupled with a 60% life-

cycle CO2 saving per litre of fossil-based aviation fuel displaced.  

For the purposes of our CO2 Road-Map, from within the range of 15-24% set out above, we take as 

our central estimate an 18% reduction in CO2 emissions from UK aviation through the use of SAF. 
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6 Market-Based Measures 

SUMMARY – substantial progress has been made since 2012 on the development of a global 

market-based measure. In October 2016, governments agreed to a Carbon Offsetting and 

Reduction Scheme for International Aviation (CORSIA), the first ever global sectoral agreement 

to introduce carbon pricing, based on the goal of capping net CO2 emissions at 2020 levels. 

CORSIA is the next necessary step to enable aviation to contribute to overall carbon 

reductions beyond those achievable within the industry itself. We welcome the role played by 

the UK in negotiations towards the agreement. There is now an opportunity to have a fresh 

look at environmental regulation in Europe and to review existing measures such as the EU 

ETS. The global aviation industry has set out a goal for aviation to reduce its net emissions in 

2050 to 50% of levels in 2005 through market-based measures. In our CO2 Road-Map we 

illustrate the required extent of net emissions reduction through market based measures to 

allow UK aviation to achieve the same goal. 

6.1 Context 

Other sections of this Road-Map have described the significant improvements expected in the carbon 

intensity of aviation over the next few decades. Notwithstanding these improvements, there is now 

widespread acceptance that to fully address CO2 emissions from aviation, and to meet challenging 

reduction targets, carbon pricing, achieved through a carbon trading policy framework, is essential. 

Since CO2 is a well-mixed greenhouse gas, the distribution of CO2 emissions between different 

locations or sectors of activity does not influence the climate system’s response to those emissions. 

Accordingly, the pursuit of the most cost-effective mitigation opportunities, irrespective of sector or 

geography, should be incentivised. 

The international character of aviation means that attribution of CO2 emissions to the UK and 

attempting to manage them in a national silo approach would lead to competitive distortions without 

reducing global net emissions. For this reason we have consistently opposed inclusion of international 

aviation in the UK carbon budget or introduction of related national targets or measures. 

In 2005 when Sustainable Aviation was established, we pledged to support practical inclusion of 

aviation in the EU Emissions Trading System and we called for aviation to be incorporated into a 

global climate policy framework. Members of Sustainable Aviation are proud to have played a leading 

role in the successful inclusion of aviation in the EU ETS from 2012 and the 2016 CORSIA global 

market-based measure agreement for international aviation. 

Sustainable Aviation will continue to support practical and efficient implementation of CORSIA and 

future development of the global system in line with our long term targets. 

6.1.1 Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) 

CORSIA is an important development in the context of the UK CO2 Road-Map since emissions from 

intercontinental flights as well as intra-European flights will be included in a climate policy measure for 

the first time. The scheme has a far broader coverage of emissions than the EU ETS and therefore 

marks a substantial step forward towards achieving net emissions targets for global aviation. 

CORSIA was agreed at the ICAO General Assembly in October 2016 following extensive global 

stakeholder engagement, analysis and discussion. 

The scheme aims to address any annual increase in total CO2 emissions from international civil 

aviation above the 2020 levels. In any year from 2021 when international aviation CO2 emissions 
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covered by the scheme exceed the baseline, this difference represents the sector's offsetting 

requirements for that year. 

The scheme is implemented in phases, starting with participation of States on a voluntary basis from 

2021 to 2026, followed by participation of all major aviation States - except the exempted States - from 

2027. 

CORSIA is a route-based scheme whereby all operators on a route will be covered by the scheme if 

both States connecting the route are participating in the scheme. This is one element that protects 

against policy-induced competitive distortion. 

Offset requirements are determined in proportion to each operator’s total emissions in the years until 

2030, from which point an element of each operator’s individual growth is included in the 

determination. 

Operators will be required to obtain emission reduction units, typically through carbon markets, from 

projects outside the aviation industry that provide cost-effective emissions reductions and meet a set 

of eligibility criteria. 

6.1.2 EU Emissions Trading System 

The EU ETS provided an important first step towards a global system by establishing the first 

international system for carbon trading in aviation. The EU ETS has achieved net emissions 

reductions for intra-European flights in the period since 2012 and has served as a key reference for 

non-European governments in developing their own national ETS approaches for aviation, as well as 

for the design of the CORSIA. 

Following the ICAO agreement, there is now an opportunity to have a fresh look at environmental 

regulation in Europe and to review existing measures such as the EU ETS for aviation to ensure the 

continued competitiveness of UK and European airlines and avoid double regulation with separate, 

overlapping measures and a duplication of administrative obligations. 

6.2 Implementation of MBMs 

SA members will continue to work with IATA, ICAO and other bodies to define aspects of the CORSIA 

scheme to ensure successful implementation, and to define the criteria for offsets. 

6.3 Representation of MBMs in our CO2 Road-Map 

6.3.1 Sources of Uncertainty 

Although there has recently been agreement at the international level concerning a global MBMs 

scheme for international aviation, there are still many source of uncertainty that make it difficult to 

calculate a representative trajectory for net CO2 emissions from UK aviation. Sources of uncertainty 

include: 

 The outcome of the 2016 referendum on the UK’s membership of the Europen Union, and the 

uncertainty it creates regarding whether all UK-departing international flights will continue to 

fall within scope of the EU ETS. 

 The future coverage of the EU ETS following agreement of the CORSIA scheme at ICAO. 

 While the overall aim of incorporating aviation into the EU ETS - namely to cap aviation’s 

within-scope CO2 emissions to a fixed percentage of a baseline level – is fairly straightforward 
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to understand, it is not so simple to calculate the net emissions attributable to an individual 

nation. 

6.3.2 Our approach 

In our 2016 Road-Map, due to the sources of uncertainty referred to above, we have chosen to 

present an indicative trajectory of net CO2 emissions from UK aviation, rather than attempting to 

provide a forward-looking calculation of the actual impact of the EU ETS and CORSIA upon UK 

aviation’s net CO2 emissions. This indicative trajectory covers the period to 2035 (when the CORSIA 

scheme reaches its end) and simply illustrates a capping of net emissions at 95% of 2005 levels, 

consistent with the overall aim of the EU ETS as it applies to aviation. 

Although we have been unable to provide a detailed calculation of the likely trajectory of net CO2 

emissions from UK aviation to 2035, we believe that over that period actual net emissions will likely lie 

below the level we have broadly indicated on our Road-Map chart, in other words that the cumulative 

reduction in net CO2 emissions from UK aviation will likely be greater than we have shown. 

In the period after 2035, for which there is currently no agreed MBMs scheme or emissions trading 

scheme in place, we simply show one possible path from 2035 to 2050 consistent with allowing UK 

aviation to meet the same goal as has been adopted by the global aviation industry, in other words to 

reduce net emissions to half of 2005 levels by 2050. Achieving this will require support from 

governments as we discuss in the next section. 

We have not considered the impact upon demand for UK aviation associated with any significant 

changes to the carbon price associated with aviation’s participation in market-based measures. 

However, we note that the Airport’s Commissions “carbon-traded” demand growth forecasts that we 

employed to construct our hypothetical no-improvements scenario (see chapter 2) incorporate the 

effect upon demand of carbon pricing. We are unable to predict the extent to which actual carbon 

prices to 2050 may differ from those assumed by the Airport’s Commission, 

6.4 “Asks” for Government 

We welcome the role played by the UK Government in negotiations towards the ICAO global MBMs 

agreement, which supports as far as 2035 the global aviation industry’s carbon neutral growth 

ambition. Government should now focus on implementation details including avoiding duplication of 

coverage with regional schemes. Government should also start the process towards the global 

mechanism for 2035 onwards, which will be essential in supporting the global aviation industry’s 

commitment to reduce net aviation CO2 emissions by 50% by 2050, relative to 2005 levels, while 

increasing capacity in support of economic growth. 
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7 The Sustainable Aviation CO2 Road-Map 

SUMMARY – based on our assumptions and analysis, we conclude that UK aviation is able to 

accommodate significant growth to 2050 without a substantial increase in CO2 emissions. 

Further reductions in net CO2 emissions are achievable through internationally agreed market-

based measures, and our Road-Map illustrates the potential reduction of net CO2 emissions to 

50% of 2005 levels by 2050. 

7.1 Introduction 

This CO2 Road-Map has drawn on expertise from all corners of the UK aviation industry, including 

airlines, airports, aerospace manufacturers and air navigation service providers. Starting from UK-

specific aviation demand growth forecasts which not only assume a high level of economic growth 

(with correspondingly high aviation demand growth) but also take account of additional runway 

capacity in the South East of England, we have then considered the likely impact on UK aviation’s CO2 

emissions of a portfolio of mitigation measures. This document has set out in a transparent manner 

the assumptions underpinning our Road-Map, the method of working used to transform our 

assumptions into the results of our analysis, and the distinction between those areas in which 

quantitative data-driven analysis has been possible and those areas where informed judgement has 

been necessary.  

7.2 The 2016 CO2 Road-Map 

7.2.1 Summary of Assumptions 

To arrive at our assumed demand-growth curve, we have selected the highest-economic-growth 

option from among the Airport’s Commission’s scenarios. We have also captured any additional 

demand arising from new runway capacity in South-East England (should such capacity be 

introduced) by taking the average of the Airports Commission’s three additional-runway-capacity 

options within the highest-economic growth scenario. As a result, there is good reason to believe that 

demand out-turn could be lower than we have assumed, which in turn would cause UK aviation CO2 

emissions to be correspondingly lower. Our hypothetical “no-improvements” scenario assumes 

demand growth by 155% (i.e. a factor of 2.55) between 2010 and 2050, including both passenger 

flights and freight-only flights. 

Our assumptions for CO2 reduction that can be achieved through improved air-traffic management and 

operational practices are very similar to our 2012 Road-Map, at a little under 9%. Further savings may 

be possible (as discussed in our 2012 Road-Map document [SA, 2012]) but we do not yet take 

account of those in our assumptions. 

Our assessment of the potential for “imminent” aircraft to reduce UK aviation CO2 emissions (relative 

to continued use of the “baseline” fleet) is now substantially larger than in our 2012 Road-Map, at 

22%. This not only takes account of revised “imminent” aircraft characteristics but also reflects a much 

more detailed view of the fleet composition in the baseline year of 2010. 

Based on the most recent evidence, we now consider it likely that “future” aircraft types will become 

available on average a little later than we assumed in our 2012 Road-Map, particularly in the “narrow-

body” aircraft category. Although “future” aircraft may offer very substantial fuel-efficiency 

improvements relative to their “imminent” counterparts, their availability timescale means that their 

contribution to fleet efficiency improvements will likely carry on well past 2050. At the 2050 point, our 

assessment suggests they contribute an approximately 21% reduction in UK aviation CO2 relative to a 

fleet composed entirely of “imminent” aircraft types. 
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We see no reason to change our assumption concerning the potential for sustainable aviation fuels to 

reduce UK aviation CO2 by 2050, which remains at 18%. Since our 2012 CO2 Road-Map, we have 

conducted a detailed analysis which was published as our Fuels Road-Map and confirms our position. 

The Market-Based Measures (MBMs) landscape has changed considerably since 2012. ICAO has 

agreed a scheme for international aviation which would run until 2035 and is intended to enable 

carbon-neutral growth from 2020. In our Road-Map graphic, we illustrate one trajectory that net CO2 

emissions from UK aviation could subsequently follow to achieve a 50% reduction by 2050, relative to 

2005 levels, matching the stated ambition of the global aviation industry. 

7.2.2 Road-Map Graphic 

 

Figure 6 – Sustainable Aviation CO2 Road-Map, showing that UK aviation can accommodate significant 

growth to 2050, including that associated with additional runway capacity in the South East of England, 

without a substantial increase in CO2 emissions. We also illustrate the potential reduction of net CO2 

emissions to 50% of 2005 levels through internationally agreed market-based measures. 

7.3 Discussion 

7.3.1 Modelled CO2 Emissions vs Reported Out-Turn CO2 Emissions 

Figure 7 shows the CO2 emissions calculated by our Road-Map model for the years 2010-14, and 

compares them to out-turn data from the UK’s National Atmospheric Emissions Inventory [NAEI] for 

the same period. It can be seen that the out-turn is slightly lower than our model’s results. 

The most likely explanation for this is that our fleet refresh model treats the displacement of older 

aircraft from the fleet by newer types as a linear process occurring gradually over the full duration of 

the assumed fleet refresh period (see Table 5 and APPENDIX D for details of the fleet refresh model 

and assumed refresh periods for each aircraft size category). However, in practice, fleet refresh within 

individual aircraft size categories can progress in bursts of activity as individual airlines receive 

file://Denasvf1a/et_global_1/Env_Tech/06_ORGANISATIONS/SA%20-%20SustAvn/04_publications/CO2RoadMap/v3/00_theReport/www.sustainableaviation.co.uk


Sustainable Aviation CO2 Road-Map 2016  © Sustainable Aviation, Dec 2016 

www.sustainableaviation.co.uk  Page 52 of 83 

batches of new aircraft and retire older aircraft. As a result our model will fail to capture short-term 

structure in the fleet refresh process. 

 

Figure 7 – comparison of reported emissions of CO2 from UK aviation (source: 

[NAEI]) against modelled CO2 emissions (source: CO2 Road-Map)  

Supporting evidence for this diagnosis can be found in Figure 8 which shows the change in the 

number of available seat kilometres (ASKs) in recent years for Boeing 767 and 787 aircraft. A swift 

transition away from the 767 and towards the 787 can be seen. Since the 787 offers a substantial fuel-

efficiency advantage relative to the 767, this transition is material to the average efficiency of the 

overall fleet. Our Road-Map model, which incorporates the 767/787 alongside the A330/A330neo 

aircraft into a single “small-medium twin-aisle” category, does not capture this fine detail and so will 

underestimate the rate of improvement in fleet-average fuel efficiency in the early years in this case. 

We are confident that the long-term conclusions of our Road-Map are unaffected by this. 

 

Figure 8 – illustration of the swift reduction in Boeing 767 activity from 2013 

onwards, with corresponding swift increase in Boeing 787 activity. Data source: 

OAG. Scope: flights which depart from UK airports.  

Another possible contributing factor (albeit of much lower materiality) is the reduction of belly-freight 

tonnage carried relative to passenger tonnage carried. Figure 11 shows that between 2010 and 2014, 

UK-departing belly-freight tonnage remained broadly unchanged, while freight-only tonnage fell 

slightly. On the other hand, Figure 7 shows overall demand (predominantly passenger traffic with a 

small component of freight-only flights) rising strongly over the same period. The resulting reduction in 

the ratio of belly-freight tonnage relative to passenger tonnage can reduce very slightly the fuel burned 

to deliver passengers to their destinations, all other things being constant. Our Road-Map model does 

not take account of changes in belly-freight carriage and so does not capture this small effect.  
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7.3.2 Average Rates of Improvement 

Taken together, our mitigation assumptions (summarised in Table 10) combine to yield an average 

rate of improvement, in UK aviation’s fuel efficiency between 2010 and 2050, of 1.44% per annum, of 

which an average of 1.22% per annum arises from the deployment of more fuel-efficient aircraft. When 

the assumed impact of sustainable aviation fuels is taken into account, the average annual rate of 

improvement in carbon intensity is 1.93%. These numbers are very similar to those in our 2012 Road-

Map.  

 

Mitigation Source 
Impact on Fleet-Average CO2 Intensity 

( average rate of improvement, % p.a. 2010-2050 ) 

ATM / Operations 0.23 
1.44 

1.93 
3.72 

Engines / Aircraft 1.22 

Sustainable Aviation Fuels 0.49 

MBMs 1.83 

Table 10 – rates of improvement in fleet-average CO2 per unit of delivered benefit, 

averaged over the period 2010-2050 

The rate of improvement in fleet-average aircraft fuel efficiency (1.22% p.a.) is of course lower than 

the assumed rate of fuel-efficiency improvement between new “imminent” aircraft and new “future” 

aircraft. (1.3% p.a. plus step-changes) set out in APPENDIX F. Reasons for this are: 

 The figure of 1.22% p.a. captures the full 40 year period 2010-2050 which also includes the 

transition from the baseline fleet to a fleet of “imminent” aircraft.  

 Given the assumptions we have used for entry into service dates and fleet transition periods, 

replacement of “imminent” aircraft types with “future” aircraft types is only partially complete by 

2050. The full effect upon fleet efficiency of “future” aircraft is therefore not captured by our 

Road-Map which looks ahead only as far as 2050.  

7.3.3 UK Aviation CO2 Emissions and National CO2 Budgets 

The UK has a legislated commitment to reduce GHG emissions by at least 80% relative to 1990 levels 

by 2050. In that context, the Committee on Climate Change (CCC) advises Government on setting 

and meeting carbon budgets. 

The CCC recognises that cost-effective opportunities for deep decarbonisation vary between different 

sectors of activity, and that some sectors - particularly aviation, agriculture and parts of industry - are 

not expected to reach zero emissions by 2050 [CCC, 2016a]. The CCC has advised that to meet the 

2050 target for the UK as a whole in a cost effective manner, aviation CO2 emissions in 2050 should 

be “around 2005 levels” [CCC, 2016a]. 

This implies that aviation’s CO2 emissions in 2050 will constitute around a quarter of the UK’s GHG 

budget in 2050. We emphasise that although in our Road-Map UK aviation emissions in 2050 are 

shown as being a little over the 2005 level, this is in the context of our assumptions for demand growth 

being based upon the highest-growth scenario (entitled “Global Growth”) from among the economic 

scenarios considered by the Airports Commission (see chapter 2). If we were instead to base our 

demand growth assumptions on the Airports Commission’s “Assessment of Need” or “Global 

Fragmentation” economic scenarios (but still assuming additional runway capacity) then our Road-

Map chart would show 2050 CO2 emissions from UK aviation as being materially below 2005 levels. 

Post 2050, it is reasonable to expect that the UK will need to make additional reductions in its GHG 

emissions, particularly in the light of the December 2015 Paris Agreement (see section 1.6). As 
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discussed in section 4.9, the transition from “imminent” aircraft to “future” aircraft will be incomplete by 

2050, meaning that substantial further improvements to fleet fuel efficiency can be expected in the 

years immediately following 2050 due to factors considered in this document. Yet further 

improvements post-2050 - through a further generation of aircraft and still further displacement of 

fossil-based aviation fuels by sustainable aviation fuels - can be contemplated, but lie beyond the time 

horizon of this document. 

7.4 Conclusions 

This document has set out Sustainable Aviation’s view of future CO2 emissions from UK aviation, 

taking account of anticipated growth in demand for aviation based upon forecasts from [AC, 2015], 

combined with our assessment of the likely impact of substantial efforts being made across all parts of 

the aviation industry to improve fuel-efficiency and reduce CO2-intensity. 

We conclude that UK aviation is able to accommodate significant growth to 2050 without a substantial 

increase in CO2 emissions. We also illustrate the potential impact of ICAO’s GMBM scheme, and the 

further reduction of net emissions post 2035. 

The technologies and know-how which will enable UK aviation to limit increases in its own CO2 

emissions can also be deployed worldwide, earning export revenues for the UK and supporting 

efficiency improvements in the much larger global aviation market. 

Government has a substantial role to play in enabling these environmental and economic benefits for 

the UK, by supplementing and supporting determined and consistent action within the aviation 

industry. 

 Government should continue to support airspace modernisation in the UK, and maintain 

momentum towards improved Air Traffic Management (ATM) collaboration across Europe. 

 We acknowledge the significant levels of government support to the UK aerospace industry 

provided through initiatives such as the Aerospace Growth Partnership (AGP). In the coming 

years Government must ensure that access by UK aerospace industry to ongoing funding for 

high-value collaborative R&D remains in place. 

 We urge the UK Government to progress the consultation on future fuels policy and on the 

inclusion of Sustainable Aviation Fuels (SAF) in the Renewable Fuels Transport Obligation to 

encourage investment in this emerging sector. This should ensure the development of UK 

expertise and technologies and establish the UK as a centre of excellence for SAF production 

and innovation. 

 We welcome the role played by the UK Government in negotiations towards the ICAO global 

MBMs agreement, which supports as far as 2035 the global aviation industry’s carbon neutral 

growth ambition. Government should now focus on implementation details including avoiding 

duplication of coverage with regional schemes. Government should also start the process 

towards the global mechanism for 2035 onwards, which will be essential in supporting the 

global aviation industry’s commitment to reduce net aviation CO2 emissions by 50% by 2050, 

relative to 2005 levels, while increasing capacity in support of economic growth. 
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APPENDIX A – Comparing the 2012 and 2016 CO2 Road-Maps  

This appendix summarises material from the main text comparing this 2016 CO2 Road-Map with its 

predecessor [SA, 2012], explaining any differences and the reasons for them. Table 11 presents the 

key figures and assumptions. 

Hypothetical “No-improvements” Scenario 

The average rate of growth in aviation activity from 2010-2050 in our hypothetical “no-improvements” 

scenario is slightly higher in our 2016 Road-Map, due to a balance between several factors. In our 

2016 Road-Map, we use demand growth forecasts based on an assumption of additional runway 

capacity in South East England. Alongside increased runway capacity, those forecasts also take 

account of the reduction in aviation demand associated with the economic downturn experienced in 

recent years in the UK. We also use a less optimistic forecast for growth in freighter activity, which 

moderates overall demand growth slightly. 

ATM and Operations 

Our improved analysis of potential CO2 savings within UK airspace attributable to ATM improvements 

planned for implementation by NATS up to 2020 has produced slightly lower results than our 2012 

review. No new evidence has emerged regarding ATM improvements outside UK airspace or in the 

period 2020-2050, hence we have retained the assumptions we used in 2012 for those categories. 

The assumptions used in our 2012 Road-Map concerning the potential savings from improved 

operational practices remain valid, and good progress has been observed towards implementing many 

of the identified improvements. As a result the combined assumptions used in our Road-Map model 

for ATM and operations are only slightly changed from those used in 2012. 

Engine and Aircraft Technology 

Our view of the potential for “imminent” aircraft to improve fleet-average fuel-efficiency relative to a 

year 2010 baseline has changed materially. We have taken more complete account of the composition 

of the baseline fleet, rather than assuming that it comprised exclusively the “best-available” aircraft at 

the time in each size-category. We have increased the granularity of our model which enables us to 

capture more effectively the different timescales within which different aircraft in different parts of the 

market will become available, and the different rates at which various older aircraft are likely to be 

phased out. We also take account of several new aircraft types which have been announced since our 

2012 Road-Map. 

When considering the subsequent replacement of “imminent” aircraft types by “future” aircraft types, 

we have retained the same overall methodology as used in our 2012 Road-Map, but we now assume 

a later entry into service of some “future” aircraft types, meaning that the fleet transition to “future” 

aircraft is now shown as being less complete by 2050 than in our 2012 Road-Map. 

Overall, our view of the likely CO2 mitigation offered by more efficient engines and aircraft by 2050 

relative to the 2010 baseline is very similar in our 2016 Road-Map to that in our 2012 Road-Map. 

However the balance has shifted materially towards the “imminent” tranche of aircraft for which we 

have greater confidence in our analysis. 

Sustainable Aviation Fuels 

We have retained the same assumptions in this category. We note considerable technical progress 

since 2012 in this area, but much remains to be done to enable large-scale adoption of sustainable 

aviation fuels.  
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Market-Based Measures 

The global aviation industry has a stated goal to reduce net CO2 emissions from aviation to half of 

2005 levels by 2050. Our 2016 Road-Map, similar to its 2012 predecessor, illustrates the scale of net 

carbon reduction that remains, after implementation of the above within-sector improvements, if UK 

aviation is also to reach 50% of 2005 levels by 2050. However in our 2016 Road-Map, we have 

accounted for the recently agreed CORSIA scheme by extending to 2035 the period of “carbon-neutral 

growth”. An as-yet-undetermined scheme will be required to bring about further reductions post 2035. 

Summary 

 

Edition of SA CO2 Road-Map: 2012 2016 

Period 2010 – 2050 

Average demand-growth rate 2.32 % p.a. 2.37 % p.a 

Reduction 

in Fleet 

Average 

Carbon 

Intensity in 

2050 

(vs 2010) 

ATM / Operations 8.9 % 8.7 % 

Aircraft and 

Engine 

“Imminent” 17.0 % 22.0 % 

“Future” 25.9 % 21.4 % 

Total 38.5 % 38.7 % 

Sustainable Aviation Fuels 18% 18% 

TOTAL 54.0 % 54.1 % 

Market-Based Measures 

As required to 

reduce net 

emissions to half of 

2005 levels 

As required to reduce net 

emissions to half of 2005 

levels, following a net-carbon-

neutral period to 2035 

Table 11 – comparison of assumptions used in the 2012 and 2016 Sustainable 

Aviation CO2 Road-Maps.  
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APPENDIX B – Hypothetical “No-Improvements” Scenario – Details 

B.1 Growth in RPKs on Passenger Flights 

In the previous issue of our CO2 Road-Map (2012), we made use of demand growth forecasts from the 

UK’s Department for Transport, taking the most recent forecasts available at the time [DfT, 2011]. As 

the basis for our growth trajectory, we used the DfT’s “central” case which assumed no new runway 

capacity in the South East of England, consistent with Government policy at the time
121

. DfT has since 

updated its forecasts [DfT, 2013] to take account of the long-term impact of the recent economic 

downturn. However, those revised forecasts are now over three years old and furthermore comprise 

two options in which runway capacity is either “constrained” (i.e. no new runway capacity at all) or 

“unconstrained” (i.e. runway capacity is allowed to expand as necessary to accommodate demand 

growth wherever it may occur). A more recent forecast, in which the underlying assumptions of 

additional runway capacity focus on specific options in the South East of England, has been published 

by the Airports Commission [AC, 2015], and it is primarily upon that document that we base our 

calculations. 

The Airports Commission document includes aviation demand growth forecasts for a variety of 

situations, covering combinations of four runway-capacity options with five economic growth 

scenarios, in either a “carbon-capped” framework or a “carbon-traded” framework. 

 In the Airports Commission’s “carbon-capped” framework, UK aviation CO2 emissions in 2050 

were constrained in the demand forecast model to no more than 2005 levels, with permitted 

levels of aviation activity being impacted as appropriate. In the corresponding “carbon-traded” 

framework, CO2 emissions were subject to a price that exerted downward pressure on 

demand but did not place a hard limit on emissions. 

 The “carbon capped” approach required the Airports Commission to make assumptions 

concerning the carbon-efficiency of future aviation activity in order to assess how much activity 

could be accommodated within the carbon cap, and therefore to calculate how much growth 

could be permitted. Since it is a primary purpose of our CO2 Road-Map to set out Sustainable 

Aviation’s own assumptions about the future carbon-efficiency of UK aviation, use of the 

“carbon-capped” demand growth scenarios would be inappropriate for our purposes. 

Therefore in our Road-Map, we use the Airports Commission’s scenarios corresponding to the 

“carbon-traded” framework, in which growth in demand for aviation is stronger than in the 

capped case. 

 Of the five economic growth scenarios presented by the Airports Commission, we have 

chosen for our Road-Map the “Global Growth” scenario which corresponds to the strongest 

growth in aviation activity. 

 The Airports Commission’s runway capacity options comprised a baseline of no new capacity, 

and three increased-capacity options. Sustainable Aviation does not have a position 

concerning the relative attractiveness of the three increased-capacity options, although we do 

support the general principle that additional runway capacity is required to support the UK’s 

economic growth and to alleviate congestion associated with running existing runways at or 

very close to their capacity limits. We have therefore taken an average of the three demand-

growth trajectories corresponding to the Airports Commission’s three additional-runway-

capacity options. More specifically, the procedure detailed below has been carried out for 

each of the three additional-runway-capacity options (to derive a year-by-year RPK trajectory 

for each such option, assuming in each case the “Global Growth” economic scenario and the 

“carbon-traded” framework) and then we have taken the arithmetic mean of those three 

trajectories. It should be noted that the difference in levels of aviation activity between the 

three additional-capacity options is in general less significant than that between the various 

                                                      
121

  This did not and does not imply our support for a “no new runways” policy 
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economic scenarios, and is also less significant than that between the baseline (no-additional-

capacity) scenario and each of the additional-capacity options. We note that although the UK 

Government has recently
122

 indicated a preference for one of the additional capacity options, 

this is subject to consultation. We therefore retain our approach of averaging the growth 

trajectories corresponding to the three additional runway capacity options, while noting that 

future issues of our Road-Map may be able to use a growth forecast corresponding to one 

specific additional-runway capacity option. Our demand-growth trajectory, being based on the 

average of three additional-runway-capacity options, is marginally lower than a corresponding 

demand growth trajectory based solely on the option for which the UK Government recently 

expressed a preference, the difference being less than 2% in 2050, and less than 3% at all 

points on the path to 2050. 

To summarise, we have selected - as the basis for our trajectory of growth in demand for passenger 

aviation - the Airports Commission’s scenario corresponding to 1) increased runway capacity (average 

of three options), 2) high economic-growth, and 3) uncapped carbon emissions. In other words our 

choice of demand growth scenario is very close to
123

 the highest-aviation-growth scenario amongst all 

those presented in [AC, 2015]. This can therefore be viewed as being towards the upper end of the 

demand growth that we are likely to observe in practice. 

Recent figures for 2015 and 2016 [CAA] show terminal passenger numbers higher than those for the 

corresponding years in the trajectories set out by the Airports Commission. However, we should be 

wary of assuming that this constitutes a trend. Possible explanations include the recent low price of oil 

which may temporarily be stimulating demand for aviation. To SA’s knowledge, the Airports 

Commission’s forecast is the UK’s most up to date formal demand growth forecast for aviation activity, 

and our Road-Map will make use of it until such time as it is superseded. 

For each of the scenario combinations considered by the Airports Commission, [AC, 2015] provides 

RPK data only for a selection of years, namely 2011, 2030, 2040 and 2050. For our Road-Map, we 

require yearly data from 2010 to 2050. This requires two sources of adjustment, as follows: 

 [AC, 2015a] provides detailed year-by-year forecasts of passenger numbers from 2011 to 

2050. We use these to derive intermediate-year RPK values for use in our Road-Map. This 

avoids a simple linear or exponential curve fit between the given points for RPK values, and 

instead allows us to capture in our model the expected slower growth in the years prior to 

2025. Although the use of passenger-number ratios to derive RPK values for intermediate 

years does not reflect year-to-year changes in the market structure, and therefore may 

introduce small errors, we emphasise that the resulting curve is anchored at the four points 

2011, 2030, 2040 and 2050 for which [AC,2015] does provide RPK forecasts, and furthermore 

any resulting errors for the intervening years are likely to be very small in comparison with 

uncertainties related to differences between the assumed economic conditions and the actual 

economic conditions. 

 We must also derive a corresponding year-2010 figure for use in our Road-Map. The data 

source used above for estimating intermediate year RPK values from passenger number 

ratios does not provide passenger numbers for 2010. However, these are available from 

[CAA]. Figure 9 shows the level of agreement between the two sources of passenger-number 

data for the first few years, indicating adequate agreement in the overlapping years 

                                                      
122

  https://www.gov.uk/government/collections/heathrow-airport-expansion , dated 25
th
 Oct 2016 

123
  Since we have taken an average of the three additional-capacity options, our chosen trajectory cannot by definition be 

identically equal to the highest-growth scenario considered by the Airports Commission. But due to the similarities in 

forecast growth associated with each of the additional-capacity options, our average is close to the highest-growth scenario. 
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Figure 9 – passenger numbers (millions) according to [CAA] and [AC, 2015a]. 

Scope: UK aviation.  

Our resulting trajectory of growth in RPKs on passenger flights is shown in Figure 10, alongside the 

RPK forecasts [AC, 2015] (average of the 3 additional-runway-capacity options) for 2011, 2030, 2040 

and 2050, from which our trajectory is derived using scaling data from [AC,2015a] and [CAA] as 

described immediately above. 

 

Figure 10 – trajectory of growth in RPKs (relative to 2010) on passenger flights. 

See main text for details. Scope: UK aviation. 

B.2 Growth in FTKs on Freight-Only Flights 

Globally, there is strong evidence that the rate of growth in air freight has slowed in recent years, and 

that it is expected to lag behind passenger transport in the years ahead. Furthermore, a transition from 

freighter-flights towards bellyhold freight is also in evidence. 

 Airbus forecasts that the global passenger aircraft fleet will increase by 109% from 2015 to 

2035, while the freighter fleet will grow by only 35%
124

. Similarly, Boeing forecasts 2015-2035 

growth in the passenger fleet as being 104%, with growth in the freighter fleet of only 70%
125

. 

                                                      
124

  See page 2 of http://www.airbus.com/company/market/global-market-forecast-2016-

2035/?eID=maglisting_push&tx_maglisting_pi1%5BdocID%5D=109228, viewed 30
th
 Sept 2016 

125
  See page 53 of http://www.boeing.com/resources/boeingdotcom/commercial/about-our-

market/assets/downloads/cmo_print_2016_final_v6.pdf, viewed 30
th
 Sept 2016 
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 Boeing forecasts that RPKs will grow at 4.8%p.a. from 2015 to 2035, while FTKs will grow by 

only 4.2%p.a. over the same period
126

. 

 Airbus forecasts that RPKs will grow at an average of 4.5%p.a.
127

 from 2016 to 2035, while 

FTKs will grow at an average of only 4.0%p.a.
128

 over the same period 

 Furthermore, Boeing also forecasts for 2015-2035 that bellyhold FTKs will grow at a faster 

rate than total freight FTKs, implying a slower rate of growth for freighter FTKs
129

. 

 IATA presents data showing that although historically growth in FTKs has matched that in 

RPKs, over the past few years there has been a significant decoupling of the two, with growth 

in FTKs being much lower in recent years
130

.  

 IATA also shows how the balance of delivered payload capacity on wide-body aircraft has in 

recent years moved away from freighters relative to passenger aircraft
131

.  

In the UK: 

 Figures from [CAA] for freight tonnes uplifted from UK airports show that freighter tonnage 

declined by over 4% between 2010 and 2015, while in the same period, bellyhold tonnage 

remained approximately stable, as shown in Figure 11. 

 

Figure 11 – tonnes of freight uplifted from UK airports . Scope: UK aviation. Data 

source: [CAA] 

 Furthermore, as shown in Figure 12 there is an apparent migration (in terms of tonnes 

uplifted) of freighter activity away from international destinations outside Europe, and towards 

destinations within Europe and the UK. While this does not prove beyond doubt that average 

freighter-flight distances are reducing, it does provide us with some reason to believe that they 

are not materially increasing, and that a reduction in freighter tonnes uplifted therefore 

probably also means a reduction in freighter FTKs. We note that this situation could change if 

there is a shift in the UK’s trading patterns arising from the outcome of the 2016 referendum 

concerning the UK’s membership of the EU. However it is too early to make predictions 

concerning the scale or impact of such effects. Future updates of our Road-Map will take 

account of the latest information available at the time of their preparation. 

                                                      
126

  See page 8 of http://www.boeing.com/resources/boeingdotcom/commercial/about-our-

market/assets/downloads/cmo_print_2016_final_v6.pdf, viewed 30
th
 Sept 2016 

127
  Page 25 of http://www.airbus.com/company/market/global-market-forecast-2016-

2035/?eID=maglisting_push&tx_maglisting_pi1%5BdocID%5D=111117, viewed 14
th
 Nov 2016 

128
  Page 101 of http://www.airbus.com/company/market/global-market-forecast-2016-

2035/?eID=maglisting_push&tx_maglisting_pi1%5BdocID%5D=111117, viewed 14
th
 Nov 2016 

129
  See page 59 of http://www.boeing.com/resources/boeingdotcom/commercial/about-our-market/cargo-market-detail-

wacf/download-report/assets/pdfs/wacf.pdf, viewed 30
th
 Sept 2016 

130
  See figure 12 of http://www.iata.org/whatwedo/Documents/economics/cargo-chartbook-Q1-2016.pdf, viewed 30

th
 Sept 2016 

131
  Ibid, figure 13 
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Figure 12 – share by destination category of tonnes of freight uplifted on freight-

only flights. Scope: UK aviation, freight-only flights. Data source: [CAA] 

We are therefore confident that, for the foreseeable future, growth in FTKs on freight-only flights is 

very unlikely to proceed at a higher rate than that in RPKs on passenger flights. This means that 

although we do not have access to detailed forecast data for UK freighter activity, we can nonetheless 

identify an upper bound, representing a growth trajectory which freighter activity is unlikely to exceed. 

 In the period 2010-1015, we use out-turn data from [CAA] for freight tonnes uplifted on 

freighter aircraft as a proxy for the growth in freighter activity. This may result in an over-

estimate of the corresponding growth in FTKs, due to the apparent migration away from 

longer-haul freight-only flights during that same period (discussed above). 

 From 2015 onwards we assume, based on the evidence set out above, that growth in freighter 

FTKs is no more rapid than that in RPKs on passenger flights. Again, this is probably an over-

estimate of the likely growth in freighter FTKs. 

Our assumed trajectory for growth in FTKs on freighter aircraft, shown in Figure 13, should thus be 

seen as an upper bound rather than as a central estimate. Despite this, the assumed growth in 

freighter FTKs used here in our 2016 Road-Map is significantly less rapid than that based on [DfT, 

2011] used in our 2012 CO2 Road-Map
132

.  

 

Figure 13 – growth trajectory of freighter FTKs. See main text for derivation. 

Scope: UK aviation. Source: SA analysis of data from [CAA] and [AC, 2015] 

                                                      
132

  Paragraph 8.11 of [DfT, 2013] presents reasons why the [DfT, 2011] freighter growth forecast has subsequently been 

revised significantly downward. 
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B.3 Combining Passenger and Freight Flights 

Table G.2 of [DfT, 2013] states that in year 2010 (the baseline year of our CO2 Road-Map), freighter 

flights accounted for 0.8 MtCO2 out of a total of 33.2 MtCO2 for UK aviation. In other words, freighters 

accounted for 2.4% of UK aviation CO2 in 2010. 

We can use this fact to combine our separate RPK and freighter-FTK forecasts, multiplying the FTKs 

“forecast” set out in section B.2 by a factor of 0.024 (corresponding to 2.4%) and the RPKs “forecast” 

set out in section B.1 by a factor of 0.976 (corresponding to the remaining 97.6%), before adding the 

two scaled trajectories together. 

Results are shown in section 2.4 of the main text. 
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APPENDIX C – NATS 10% Target and UK Aviation CO2 Emissions 

This appendix relates to and should be read in conjunction with section 3.2.2 of the main text.  

In 2008, NATS committed to a target of reducing CO2 emissions from aircraft under NATS control by 

10% per flight by 2020 relative to a 2006 baseline. [NATS, 2012]
133

 shows the expected delivery 

profile of the 10% saving, indicating that the overwhelming majority of the improvements will be 

delivered post 2010. In other words, the delivery of the NATS-driven CO2 savings can be viewed as 

occurring entirely within the 

timeframe spanned by our CO2 

Road-Map, without introducing 

material error. 

Although CO2 emissions from 

UK aviation in 2006 were 38.1 

Mt
134

, emissions in the same 

year from aircraft under NATS 

control were 25.0 Mt
135

, as 

reported in our 2012 Road-Map. 

Full achievement of the NATS 

10% target would thus save 2.5 

MtCO2 from flights under NATS 

control, relative to the 2006 

baseline aviation activity level. 

Subsequent growth or 

contraction of aviation activity would increase or decrease the absolute saving but we assume the 

relative saving is approximately constant, which therefore implies an assumption on our part that the 

distribution of aviation activity between different markets remains approximately constant between 

2006 and 2020. 

NATS calculates that 10.0 MtCO2 of the 25.0 MtCO2 was attributable to domestic flights and outbound 

international flights (i.e. lying within scope of our Road-Map, and corresponding to the “X” in the figure 

above) while the remainder was attributable to overflights and inbound international flights which are 

out of scope. This 10.0 MtCO2 is a little smaller than the figure of 12.3 MtCO2 which was the best 

available information at the time of our 2012 Road-Map. However, the impact of this change upon the 

CO2 mitigation potential for UK aviation is minimal, since the change relates to within-scope activity in 

the North Atlantic part of NATS airspace which is predominantly cruise activity for which the likely 

savings are small compared with those in other phases of flight, as discussed immediately below. 

[NATS, 2009]
136

 lists the proportion of the NATS 10% target that is expected from each of the phases 

of flight, as follows: climb 3.25%, cruise 1.5%, descent 4.75%, airport 0.5%. It should be noted that 

even though an individual aircraft will use substantially more fuel per unit distance in its climb phase of 

flight than when descending, the opportunities for saving CO2 are greater in the descent phase due to 

greater levels of inefficiency. Table 12 shows how these percentages can be re-expressed as a 

proportion of UK aviation emissions in the same year 2006. 

  

                                                      
133

  page 18 thereof 
134

  Source: [NAEI] 
135

  Source: NATS analysis 
136

  Page 15 thereof 
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Flight Phase NATS target saving as 

% of 2006 NATS 

baseline
137

 

NATS target MtCO2 saving 

relative to NATS 2006 baseline 

of 25 MtCO2
138

 

NATS target % saving vs 

2006 UK aviation 

emissions of 38.1 MtCO2
139

 

Climb 3.25 0.8125 2.13 

Cruise 1.5 0.375 0.98 

Airport 0.5 0.125 0.33 

Descent 4.75 1.1875 3.12 

TOTAL 10 % 2.5 MtCO2 6.56 % 

Table 12 – target savings by phase of flight, expressed relative to NATS baseline 

and relative to UK aviation in the same year 2006.  

We can then establish how much of each line of Table 12 lies within scope of our Road-Map i.e. 

applies to flights which depart from UK airports (domestic flights and outbound international flights). 

 For “climb”, some 85%
140

 of fuel burned in the climb phase within the UK FIR
141

 is attributable 

to flights which have departed from UK airports, and thus lies within scope of our Road-Map. 

The other 15% is attributable to flights originating from nearby non-UK airports (such as 

Dublin, Brussels, Amsterdam and others). 

 For “cruise”, the situation is a little more complicated. [NATS, 2009]
142

 details the breakdown 

between flight categories of 2006 CO2 emissions from flights while under NATS control.  

o Overflights (out of scope) account for 23% of 2006 CO2 emissions from flights while 

under NATS control - it is reasonable to assume that most of this is emitted during 

cruise since overflights have relatively little climb/descent activity within UK airspace. 

o Domestic flights (in scope) account for 14% of the 2006 CO2 emissions under NATS 

control. However, only a relatively small proportion (around one third) of this will take 

place at cruise due to the short distances involved (most UK domestic flights are 

around 350nm or less, and so fuel burned in the non-cruise phases of light, 

particularly climb, dominates). 

o Inbound international flights (out of scope) may include a long cruise segment within 

NATS airspace (for example if approaching from North America), or very little (if 

approaching London from North-West Europe. However, averaged over all inbound 

international flights, the proportion of cruise fuel burn, relative to the descent and taxi-

in fuel-burn, is likely to be fairly high, perhaps two thirds. 

o Similarly, outbound international flights (in scope) may or may not include a 

substantial cruise segment within NATS airspace. In either case climb fuel-burn is 

likely to be more material than was the case for descent fuel-burn on inbound flights. 

As a result, the proportion of CO2 emissions from outbound-international flights under 

NATS control that is attributable to the cruise phase is likely to be somewhere in the 

range of one-third to one-half. 

o Combining the above suggests that around one third of CO2 emissions from cruising 

aircraft under NATS control also lies within scope of our Road-Map. 

 For “descent”, CAA Airport data
143

 for 2006 shows that some 36% of all air transport 

movements in 2006 were related to domestic flights, meaning that domestic flights accounted 

                                                      
137

  Source: [NATS, 2009] 
138

  Baseline of 25.0 MtCO2 (emissions in 2006 from flights while under NATS control). 
139

  UK aviation CO2 emissions in 2006: 38.1 MtCO2. 
140

  Source: NATS 
141

  FIR = flight information region 
142

  Pie chart of CO2 emissions on page 09 thereof 
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for some 36% of all instances of descent into UK airports. However, since aircraft used for 

domestic flights are generally smaller and lighter than those used for international flights, and 

particularly for long-haul flights, the materiality of domestic flights within the CO2 associated 

with the descent phase of flight in 2006 is materially less than 36%. Data from OAG
144

 for year 

2006 scheduled flights can be used to show that the frequency-weighted average seat count 

for domestic arrivals in 2006 was 87.8 seats while that for international arrivals in the same 

year was 162.0 seats. Using seat-count as a proxy for materiality with respect to CO2 

emissions in the descent phase, domestic descents can be assigned a materiality of 23.3%
145

 

(i.e. rather less than 36%) for year 2006. Therefore the fraction of the target CO2 saving in the 

descent phase that also lies within scope of our Road-Map is around 23% for year 2006. A 

similar calculation for year 2014 yields a value of 17%, reflecting the relative decline of 

domestic flights within the overall mix. We shall use a value of 15% in anticipation of a further 

continuation of that trend to 2020. 

 For “airport” - we might simplistically assume that half (i.e. 50%) of the CO2 attributable to 

aircraft ground movements lies within scope of our Road-Map, since for every departure 

(within scope) there is a corresponding arrival (out of scope except for domestic arrivals). 

However, we note that departing aircraft are subject to considerably more ground holding than 

arriving flights. We estimate that this raises the materiality of departing flights to around two 

thirds rather than half, i.e. we are assuming that each aircraft emits around twice as much CO2 

from its departure-related ground movements as from its arrival-related ground movements. 

Taking domestic arrivals into account as well, we estimate that some 70%
146

 of total CO2 

emissions from aircraft ground movements fall within scope of the Road-Map. 

The results are summarised in Table 13. 

 

Flight Phase NATS Target % saving vs 

2006 UK aviation 

emissions
147

 

Fraction of line within 

scope of UK aviation 

(see text) 

Within-Scope % saving 

vs 2006 UK aviation 

emissions 

Climb 2.13 0.85 1.81 

Cruise 0.98 0.33 0.32 

Airport 0.33 0.7 0.20 

Descent 3.12 0.15 0.47 

  TOTAL 2.83 % vs 2006 

  Used for Road-Map 2.8 % vs 2010 

Table 13 – estimation of available percentage saving of 2010 UK aviation CO2 

emissions arising from achievement of the NATS 10% target. 

As explained above, the delivery of the NATS target is largely post-2010, and so we can assume that 

the overwhelming majority of the 2.83% relative to 2006 emissions also applies to the Road-Map’s 

2010 baseline. We shall assume a likely saving of 2.8% relative to the 2010 baseline in our Road-Map 

calculations. 
                                                                                                                                                                      
143

  https://www.caa.co.uk/Data-and-analysis/UK-aviation-market/Airports/Datasets/UK-Airport-data/Airport-data-1990-onwards/, 

Table 05 (“Air Transport Movements”) of data for full-year 2006. 
144

  http://analytics.oag.com, accessed 14
th
 July 2016 

145
  (36%*87.8seats) / [(36%*87.8) + (64%*162.0)] = 23.3% 

146
  In the above discussion, we have estimated for the descent phase that domestic arrivals have a materiality of around 15% 

of the descent CO2 of all arrivals. We can reasonably assume the same level of materiality for domestic arrivals within the 

ground-movement CO2 of all arrivals. We have also estimated that arrival-related ground movements account for about one 

third of CO2 from all aircraft ground movements. Taking 15% of one third gives 5% which when added to the other two thirds 

(66% of ground-movement CO2 related to departures which lie entirely within scope) yields about 70% of CO2 emissions 

from aircraft ground movements being within scope. 
147

  From Table 12 
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APPENDIX D – Characteristics of “Imminent” Aircraft Types 

This appendix relates to and should be read in conjunction with section 4.4 of the main text.  

D.1 Fuel-Efficiency Improvements 

Manufacturers’ claims for the fuel-efficiency of their respective products falling within scope of our 

“imminent” category are as follows: 

1. The Bombardier C Series reduces CO2 emissions per seat by 20% compared with in-

production aircraft in the same class
148

. 

2. The Embraer E2 aircraft offer fuel-burn per seat improvements relative to their respective 

predecessors of 16% (E190-E2 vs E190)
149

, 16% (E175-E2 vs E175)
150

 and 24% (E195-

E2 vs E195)
151

 on a 600nm flight. 

3. The Boeing “737 MAX will be 14 percent more fuel-efficient than today's most efficient 

Next-Generation 737s – and 20 percent better than the original Next-Generation 737s 

when they first entered service"
152

.  

4. The Boeing 737 MAX 200 offers “up to 20 percent better fuel efficiency per seat than 

today's most efficient single-aisle airplanes”
153

. 

5. “Improvements for the A320neo Family result in a per-seat fuel burn saving of 20 per cent 

compared to current engine option (CEO) jetliners by 2020”
154

, the neo vs ceo per-seat 

fuel burn saving being 19% for the A319, 20% for the A320 and 23% for the A321
155

. 

6. The Airbus A321LR offers “30% lower fuel burn per seat than 757-200W ”
156,157

. 

7. The Airbus A330neo “delivers fuel savings of 14 per cent per seat compared to in-

production A330s”
158

. 

8. Boeing 787-9 aircraft offer “20 percent less fuel use and 20 percent fewer emissions than 

the airplanes they replace”
159

. 

9. The Boeing 787-10 “will deliver 25 percent better fuel use and emissions than the 

airplanes it will replace”
160

. 

10. The Airbus A350 XWB offers “25 per cent lower fuel consumption compared to its current 

aluminium long-range competitors”
161

. 

11. The Boeing 777X “reduces fuel use and CO2 emissions by 20% compared to previous 

generation aircraft”
162

. 

                                                      
148

  http://commercialaircraft.bombardier.com/en/cseries/Environment.html, viewed 26 Apr 2016 
149

  http://www.embraercommercialaviation.com/Pages/Ejets-190-E2.aspx#aFuel_Burn, viewed 17 May 2016 
150

  http://www.embraercommercialaviation.com/Pages/Ejets-175-E2.aspx#aFuel_Burn, viewed 17 May 2016 
151

  http://www.embraercommercialaviation.com/Pages/Ejets-195-E2.aspx#aFuel_Burn, viewed 17 May 2016 
152

 http://boeing.mediaroom.com/2014-10-31-Boeing-Monarch-Airlines-Finalize-Order-for-30-737-MAX-8s, viewed 26 Apr 2016 
153

  http://boeing.mediaroom.com/2014-12-01-Boeing-Ryanair-Finalize-Order-for-100-737-MAX-200s, viewed 26 Apr 2016  
154

  http://www.airbus.com/aircraftfamilies/passengeraircraft/a320family/spotlight-on-a320neo/, viewed 26 Apr 2016 
155

  http://www.airbus.com/presscentre/hot-topics/annual-press-conference-

2016/?eID=maglisting_push&tx_maglisting_pi1%5BdocID%5D=104646, slide 18, viewed 26 Apr 2016 
156

  https://asfaarbyairbus.com/asfaar/february-2015/a321lr-extending-market-reach/, viewed 24 May 2016 
157

  http://www.airbus.com/presscentre/corporate-information/key-

documents/?eID=maglisting_push&tx_maglisting_pi1%5BdocID%5D=104646, (page 20), viewed 23 May 2016 
158

  http://www.airbus.com/aircraftfamilies/passengeraircraft/a330family/spotlight-on-a330neo/, viewed 26 Apr 2016 
159

  http://boeing.mediaroom.com/2015-10-22-Boeing-Norwegian-Finalize-Order-for-19-787-9-Dreamliners, viewed 26 Apr 2016 
160

  http://boeing.mediaroom.com/2016-03-15-Boeing-787-10-Dreamliner-Begins-Major-Assembly, viewed 26 Apr 2016 
161

  http://www.airbus.com/aircraftfamilies/passengeraircraft/a350xwbfamily/, viewed 26 Apr 2016 
162

  http://aviationbenefits.org/media/100195/aviation-climate-solutions_web-114.pdf, viewed 19 July 2016 
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12. “At 544 seats layout - 4-class, the A380 has: 40% lower fuel burn per seat than 747-

400”
163

. 

It will be noticed that we have not included the Boeing 747-8 Intercontinental in the above list. 

Although that aircraft entered service several years ago and is in regular commercial use by several 

airlines on many routes
164

 globally, none of those routes currently serve the UK. In the specific context 

of UK aviation therefore, at the present time the materiality of the 747-8 Intercontinental for reducing 

CO2 through the displacement of UK aviation activity from older aircraft types (such as the Boeing 

747-400) is low. Furthermore, the Boeing order-book
165

 for the 747-8 Intercontinental currently shows 

no orders from UK-based airlines and only a relatively small number of orders remaining to be fulfilled 

from other airlines. Of course, this situation may change in the future and we shall update as 

necessary our analysis in future issues of our CO2 Road-Map to reflect the prevailing situation at the 

time of their preparation. Nonetheless, this 2016 version of our CO2 Road-Map does not take account 

of the 747-8 for the reasons given immediately above. Note that the remarks made in this paragraph 

concern the passenger version of the 747-8 and not the freighter version. 

D.2 Entry Into Service (EIS) Dates and Fleet Refresh Periods 

EIS dates of the “imminent” aircraft types listed above are easily obtained from manufacturers’ 

websites and/or a variety of other sources, and are listed in Table 4. 

As a default value, we assume that the time taken to displace older aircraft in a particular category 

from the fleet, once a new aircraft of that category becomes available, is in the region of 25 years. 

However, in certain aircraft categories we have modelled the fleet turnover as taking a shorter or 

longer period, for reasons discussed below. 

 Turboprops and regional jets– we use the default fleet refresh period of 25 years. 

 Airbus A320 family – in our 2012 Road-map we assumed a substantial transition period 

during which production of A320-family ceo and neo variants would proceed side by side, and 

as a result our assumed fleet transition period in this category was 30 years from EIS of the 

neo, rather than the default of 25 years. However, the remaining order book
166

 for 

conventional engine option (ceo) variants now suggests a much shorter transition period than 

we had previously assumed. So in our 2016 Road-Map we use the default fleet refresh period 

of 25 years from EIS of the neo variant.  

 Boeing 737 family – in our model we assume that fleet refresh is complete within 25 years of 

EIS of the “imminent” aircraft (737 MAX, 2017). This is shorter than we assumed in our 2012 

Road-Map, for similar reasons to those outlined immediately above
167

. However, we also take 

account of substantial improvements in the efficiency of the in-service 737 fleet during the 

period 2010-2017, arising from replacement of 737 Classics with 737 Next Generation aircraft 

as is evident from Figure 15. As a result we model the fleet turnover as spanning a 32-year 

period from 2010. 

                                                      
163

  http://www.airbus.com/presscentre/corporate-information/key-

documents/?eID=maglisting_push&tx_maglisting_pi1%5BdocID%5D=104637, viewed 19 July 2016 
164

  See for example http://www.gcmap.com/featured/20151129 
165

  http://www.boeing.com/commercial/?cm_re=March_2015-_-Roadblock-_-Orders+%26+Deliveries/#/orders-deliveries, 

viewed 18 July 2016 
166

  http://www.airbus.com/company/market/orders-deliveries/?eID=maglisting_push&tx_maglisting_pi1%5BdocID%5D=110412, 

viewed 12
th
 Sept 2016 

167
  http://www.boeing.com/commercial/?cm_re=March_2015-_-Roadblock-_-Orders+%26+Deliveries/#/orders-deliveries, 

viewed 12
th
 Sept 2016 
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 Boeing 757 – since the build years
168

 of current in-service 757 aircraft worldwide span 1983-

2004, and since the earliest corresponding “imminent” aircraft (A321LR) will not become 

available until 2019, even the youngest members of the 757 fleet will be well into middle age 

by the time the replacement aircraft start to enter service. As a result, we assume a short fleet 

refresh period of 10 years, starting in 2019. 

 Small/Medium Twin Aisle (SMTA) – we use the default of 25 years, starting at EIS of the first 

“imminent” aircraft types (Boeing 787, 2011). This choice means that we do not capture the 

swift reduction in Boeing 767 activity that has become apparent in the short time since the 

Boeing 787 entered service (see section 7.3.1). As a result our Road-Map is likely to under-

predict reductions in CO2 intensity (i.e. to over-predict emissions) in the early years after 2010. 

 Large Twin Aisle (LTA) – as with the 737, we assume fleet refresh is completed within 25 

years of EIS of the first available “imminent” aircraft type (A350 XWB, 2015), but we also take 

account of fleet efficiency improvements taking place from 2010, as 777-200 and -200ER 

aircraft are replaced with 777-300ER aircraft. As a result our model assumes a 30-year 

transition from the baseline fleet to an all-“imminent” fleet, starting in 2010 and lasting until 

2040. 

 Boeing 747-400 – the number of ASKs delivered on UK-departing flights by 747 aircraft are 

shown in Figure 14, which reveals a consistent downward trend over the past decade or more 

which, if linearly extrapolated, reaches zero around 2021 or 2022. We could therefore assume 

a fleet refresh period of 12 years (from 2010), motivated also by the age of the fleet
169

 and by 

drivers for replacement that include not only fuel costs but also the noise footprint of that 

aircraft relative to more modern and/or smaller alternatives. However, almost all of the ASKs 

currently being delivered by 747-400 aircraft are attributable to only two operators, of which 

one, British Airways, has recently announced a life-extension
170

 to its 747 fleet. Hence in this 

category we shall assume a fleet refresh period of 15 years, i.e. that replacement of 747-400 

aircraft is largely complete by 2025. 

 

Figure 14 – ASKs delivered by 747 aircraft. Scope: UK aviation. Data source: OAG 

A summary of the above discussion is included in Table 5 in the main text. 

Our fleet transition model assumes a linear transition between generations of aircraft types, as 

described in section 5.6 of our 2012 CO2 Road-Map. 

                                                      
168

  Source: Ascend, accessed 14
th
 Sept 2016, including all 757 variants excluding pure freighters 

169
  Data from Ascend (accessed 29

th
 Sept 2016) show that the build years of 747-400 aircraft currently in service with British 

Airways and Virgin Atlantic span the period 1990-2001, meaning that even the youngest of those aircraft will be over 20 

years old by 2022 . 
170

  For details see page 107 of 118 of http://phx.corporate-

ir.net/External.File?item=UGFyZW50SUQ9MzU3NDQzfENoaWxkSUQ9LTF8VHlwZT0z&t=1&cb=636138423067231682 
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APPENDIX E – Fleet Fuel-Efficiency Impact of “Imminent” Aircraft 

This appendix relates to and should be read in conjunction with section 4.5 of the main text. 

The following discussions draw upon the data presented in Table 4 and Figure 3 

Turboprops 

We are unaware of any “imminent” aircraft types in this category. As a result, we envisage no 

improvement to the efficiency with which ASKs are delivered by turboprop aircraft until such time as 

“future” aircraft types become available in this category. Since turboprops are responsible for only a 

small fraction of UK aviation, the impact on the outcome will be very small. 

Regional Jets 

In this category we apply a 20% fuel-efficiency saving, based upon the expected fuel-efficiency 

improvements offered by the Bombardier C Series and Embraer E2 aircraft. 

737 Family 

The distribution of UK aviation ASKs between various members of the 737 family is shown in Figure 

15. A clear trend is evident of migration towards the more fuel-efficient 737-800 from other family 

members. In particular, the 2010 fleet comprises a substantial component of Boeing 737 Classics
171

 

which preceded the 737 NG
172

, which in turn is the predecessor of the 737 MAX. The 737 NG is 9-

14% more fuel-efficient per seat than 737 Classics
173

. The 9% comparison relates to early examples of 

the 737 NG, while the 14% relates to more recent examples of the NG. We know from APPENDIX D 

that the 737 MAX is 20% more fuel efficient than early examples of the 737 NG. Hence the fuel 

efficiency improvement between 737 Classics and the 737 MAX is 27%
174

. 

.  

Figure 15 – distribution of ASKs between different members of the Boeing 737 

family. Scope: UK aviation (flights which depart from UK airports). Source: SA analysis 

of OAG data. 

                                                      
171

  737 Classics = 737-300, 737-400 and 737-500 
172

  737 NG (Next Generation) = 737-600, 737-700, 737-800 and 737-900 
173

  http://www.boeing.com/commercial/737ng/#/design-highlights/environmentally-progressive/cleaner-for-the-community/more-

efficient-operations, viewed 18
th
 May 2016 

174
  9% combined with a further 20% means that fuel use per seat is multiplied by 0.91 and 0.8 respectively, so the post- 

improvement fuel use per seat is 0.91 * 0.8 = 0.728 i.e. a reduction of 27% 
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Table 14 shows the year-2010 distribution of ASKs between different generations of the 737 family. 

Where the available data do not allow us to identify which member of an aircraft family is responsible 

for flights, we make the most conservative assumption concerning the fuel-efficiency improvement 

opportunity associated with its replacement. Specifically, this means that a generic or “unknown” 737 

is assumed to be a recent example of a 737 NG, in which case the fuel efficiency opportunity 

associated with its replacement by a 737 MAX is assumed to be 14%. Although this could be a 

substantial underestimate (14% vs up to 27%), the low materiality of “unknown” 737s within the total of 

year-2010 737 ASKs means that the error it introduces is small. 

 

Type Unknown Classics NG 

% of 737-family 2010 ASKs 2.5 23.4 74.1 

Table 14 – share of year-2010 ASKs within the B737 aircraft family. Scope and 

source – as Figure 15 

In 2010, the vast majority of ASKs delivered by 737 NGs were attributable to 737-800 aircraft, of which 

most were operated by Ryanair and Thomson Airways, as shown in Table 15. 

 

Operator Ryanair Thomson Airways Other 

Share of year-2010 UK aviation 

ASKs delivered by Boeing 737-800s 
81.7% 11.5% 6.8% 

Table 15 – share by operator of year 2010 ASKs delivered by 737-800 aircraft. 

Scope: UK aviation. Source: SA analysis of data from OAG 

Given the dominance of the 737-800 within the overall 737 picture in our baseline year, it is worth 

delving a little more deeply into the age distribution and configuration of those aircraft, and also 

considering what they may be replaced with.  

We note that Ryanair has a substantial order
175

 for 737 MAX 200 aircraft which offer improved fuel 

efficiency per seat relative to the standard 737 MAX. Comparing the size of that order with the size of 

Ryanair’s fleet
176

, and observing the high materiality of Ryanair 737-800s within overall year 2010 UK 

aviation 737-800 usage, we make the simple but conservative assumption that around one third of 

737-800 aircraft used within UK aviation will be replaced by 737 MAX 200 aircraft, with the other two-

thirds being replaced by 737 MAX aircraft. 

We now consider the characteristics of the 737-800 aircraft being replaced. For very recently 

manufactured 737 NGs, we know from APPENDIX D that the fuel-improvement opportunity 

associated with their replacement is 14% (737 MAX) or 20% (737 MAX 200). For the very early 737 

NGs we know, again from APPENDIX D, that the fuel-efficiency improvement associated with their 

replacement by 737 MAX aircraft is 20%. It follows that the replacement of early 737 NGs by 737 MAX 

200 aircraft gives a fuel-efficiency improvement opportunity of some 26%. 737 NGs manufactured 

between those two extremes present opportunities lying between the two.  

Figure 16 shows the age distribution of the year-end-2010 737-800 fleets of Ryanair and Thomson 

Airways. We assume that half of that fleet (build year 2008 onwards) can be described as “recent” 737 

NGs offering 14-20% fuel-efficiency improvement opportunity, and that the other half (build-year 2007 

or earlier) can be described as “early” 737 NGs. 

                                                      
175

  http://boeing.mediaroom.com/2014-09-08-Boeing-Launches-737-MAX-200-with-Ryanair, viewed 13
th
 Sept 2016 

176
  Source: Ascend 
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However, by 2010, the overwhelming majority of 737-800 aircraft in use by Ryanair and Thomson 

Airways had winglets fitted
177

, yielding a fuel-efficiency improvement (relative to no winglets) of some 

1.5% to 4% depending on mission length
178

. We assume a central value of 3%, implying that the fuel-

efficiency opportunity in upgrading from older 737 NGs (with winglets) to the 737 MAX or the 737 MAX 

200 is respectively 17 and 23% rather than the 20 and 26% which would be possible if those older 

aircraft lacked winglets. “Recent” 737 NGs have winglets fitted as standard and the 14-20% 

improvement opportunity applying to those aircraft takes account of that. 

 

Figure 16 – range of build years of 737-800 aircraft at year-end 2010, and the 

estimated fuel-efficiency improvement opportunity associated with replacement 

of those aircraft by 737 MAX or by 737 MAX 200. Scope: UK aviation. Source: SA 

assumptions based on data from Ascend and Boeing data as discussed in the main text 

Table 16 shows how the above discussion is translated into a single fleet-wide fuel-efficiency 

opportunity related to replacing the baseline (year 2010) 737 fleet with 737 MAX and 737 MAX 200 

aircraft, according to the assumptions set out above. 

 

B737 Type Materiality 
Efficiency 

improvement 
Fleet-wide 

saving 
(fraction of pre-

improvement total) 

 

Old New 
share of year-

2010 ASKs
179 

share of year-

2010 fuel-

burn
180 

% factor  

Unknown MAX 0.025 0.0237 14 0.86 0.020  

Classics MAX 0.234 0.2613 27 0.73 0.191  

NG (new) 
MAX 

0.741 

0.247 0.2341 14 0.86 0.201  

MAX 200 0.1235 0.1171 20 0.8 0.094  

NG (old) 

(winglets) 

MAX 0.247 0.2426 17 0.83 0.201  

MAX 200 0.1235 0.1213 23 0.77 0.093  

TOTAL 1 1   
0.801 Factor 

19.9 % 

Table 16 - calculation of total B737 fleet-wide saving achievable from replacement 

of 737 aircraft with 737 MAX aircraft. Scope – UK aviation. Baseline – year 2010. 

                                                      
177

  Source: Ascend 
178

  Source: http://www.aviationpartnersboeing.com/products_737_800.php, viewed 12
th
 Sept 2016 

179
  Source: SA analysis of data from OAG 

180
  Derived from previous column using relative fuel efficiency of the various “old” types 
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A320 family 

The distribution, between various members of the A320 family, of UK aviation ASKs is shown in 

Figure 17, with the corresponding values for year 2010 given in Table 17. 

 

Figure 17 – distribution of ASKs between different members of the Airbus A320 

family. Scope: UK aviation. Source: SA analysis of OAG data. 

 

Type Unknown A319 A320 A321 

% of A320-family 2010 ASKs 0.7 41.3 37.1 20.8 

Table 17 – share of year-2010 ASKs within the A320 aircraft family. Scope and 

source – as Figure 17. 

Using data from Table 4 in conjunction with the fuel-efficiency improvements given in APPENDIX D, 

we can perform a weighted sum as shown in Table 18 to show that the fuel-efficiency improvement 

associated with the replacement of A320ceo family members with corresponding A320neo family 

members is 20.7%. Where the available data do not allow us to identify which A320 family member is 

responsible for flights performed in the baseline year of 2010, we make the most conservative 

assumption concerning the fuel-efficiency improvement opportunity associated with its replacement. 

Specifically, a generic A320 (labelled as “unknown” in Table 17 and Table 18) is assumed to yield 

only a 19% improvement opportunity when replaced with its corresponding re-engined aircraft. This is 

potentially a small under-estimate (19% vs up to 23%), and applies only to a very small percentage of 

year-2010 A320-family ASKs, hence the error it introduces is very small. 

 

 

A320 

family 

member 

Materiality 
(share of year-

2010 ASKs)
181 

Efficiency improvement 

(ceo to neo) 
Fleet-wide saving 

(fraction of pre-improvement 

total) 

 

%
182

 factor  

Unknown 0.007 19 0.81 0.006  

A319 0.413 19 0.81 0.335  

A320 0.371 21 0.79 0.293  

A321 0.208 23 0.77 0.16  

TOTAL 1   
0.793 Factor 

20.7 % 

Table 18 – calculation of total A320 family fleet-wide saving achievable from 

replacement of A320ceo family aircraft with corresponding members of the 

A320neo family. Scope – UK aviation. Baseline – year 2010. 

                                                      
181

  Source: Table 17 
182

  Source: APPENDIX D 
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757 

Although some migration away from the 757 is evident between 2010 and 2014, we envisage that in 

the medium term much of the activity performed in 2010 by the 757 will migrate to A321LR aircraft 

(offering a 30% fuel efficiency improvement) and an as-yet undefined equivalent from Boeing.  

Small-Medium Twin-Aisle 

In this size category, we have Airbus A300/A310, A330, A340-200/300 and Boeing 767 aircraft being 

replaced by Airbus A330neo and Boeing 787 aircraft. We are not able to predict, nor would 

Sustainable Aviation adopt a position regarding, the likely market share between the Airbus A330neo 

and the Boeing 787. So here we assume an equal market split between the two families.  

From APPENDIX D, the A330neo offers a 14% improvement relative to the A330ceo, while variants of 

the 787 family offer a 20% improvement (787-8 and 787-9) or a 25% improvement (787-10) relative to 

the aircraft they will replace. 

As of June 2016, 787-10 aircraft accounted for around 13% of the global 787 order book
183

. Looking 

specifically at UK-based airlines (June 2016), 16% of the 787s ordered by British Airways, TUI travel 

and Virgin Atlantic Airways are the -10 variant. As the -10 is the most recently-launched variant of the 

family, it is reasonable to assume that the proportion of global 787 orders it accounts for may rise a 

little over time. 

Based on the current situation, we assume that around 15% of 787 activity will be due to the -10 

variant, offering a 25% fuel-efficiency improvement over aircraft it will replace, while the remaining 

85% of 787 activity will offer a 20% fuel-efficiency improvement over the displaced aircraft types. 

In this category therefore, we are assuming that 50% of the fleet achieves a 14% efficiency 

improvement over replaced aircraft, 42.5% of the fleet achieves a 20% improvement, and 7.5% 

achieves a 25% improvement. The weighted average is therefore 17.3%. 

Note that this approach is slightly conservative because it does not take account of the fact that 

displaced aircraft include older aircraft types such as the A300/A310, as well as more recent types 

such as the A330 and Boeing 767.  

Large Twin Aisle 

In this category, we again assume a 50:50 market split between the two competing aircraft families, in 

this case the Airbus A350 XWB family and the Boeing 777X family. From APPENDIX D, the Airbus 

A350 XWB offers “25 per cent lower fuel consumption compared to its current aluminium long-range 

competitors” while the Boeing 777X “reduces fuel use and CO2 emissions by 20% compared to 

previous generation aircraft”. However, we can use additional information to take more complete 

account of the baseline fleet composition in 2010 

 The Boeing 777X is 20% more fuel efficient than the 777-300ER
184

 

 The 777-300ER is 10% more fuel-efficient on a per-seat basis than the 777-200ER
185

, hence 

the 777X is some 28% more fuel efficient than the 777-200ER
186

. 

                                                      
183

  http://www.boeing.com/commercial/?cm_re=March_2015-_-Roadblock-_-Orders+%26+Deliveries/#/orders-deliveries, 

viewed 21 Jun 2016 
184

  source: Boeing 
185

  http://www.boeing.com/commercial/777/#/design-highlights/unmatched-capabilities/profitability/fuel-efficiency/, viewed 12
th
 

Sept 2016 
186

  0.9 * 0.8 = 0.72 i.e. 28% reduction in fuel burn per passenger kilometre 
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 The 777-200LR is 1% more fuel-efficient on a per-seat basis than the 777-200ER
187

, while the 

777-200 has a very similar fuel-efficiency to the 777-200ER. 

 In year 2010, at least 59% of UK 777 ASKs were attributable to the -200, -200ER and -200LR 

variants
188

. 

Replacement of 777 aircraft from the baseline (year 2010) fleet by 777X aircraft can thus be shown to 

offer an approximately 25% fuel-efficiency opportunity. 

We have no precise information regarding the 25% fuel-efficiency improvement offered by the A350 

XWB in terms of what the specific comparison aircraft is, so we take the 25% as is. 

Overall, assuming a 50:50 market split between the two “imminent” aircraft families in this category, 

we assume in our Road-Map model a 25% fuel-efficiency opportunity. 

B747-400 

In our 2012 CO2 Road-Map, we made the assumption that 747-400 activity in year 2010 would, over 

time, migrate to newer aircraft in the same size category, specifically a mixture of the Airbus A380 and 

the Boeing 747-8. However, as explained in APPENDIX D, current evidence suggests that the 747-8 

is unlikely, in the short-to-medium term, to take on a material role in UK passenger aviation, despite its 

substantial use in other parts of the world. If we were to follow the same approach taken in our 2012 

Road-Map therefore, we would in our 2016 Road-Map simply assume that 747-400 activity would be 

replaced exclusively by A380 activity.  

 

Figure 18 – Changing materiality of very large aircraft (Boeing 747, Airbus A380) 

within UK aviation, as measured by available seat kilometres. Data source: OAG. 

However, Figure 18 shows a slight decline since 2010 in the percentage of UK aviation ASKs 

delivered by very large aircraft (Boeing 747-400 and Airbus A380 combined). Based on this, and 

unlike our 2012 Road-Map, we do not assume that all 2010 747-400 activity will be replaced by large 

4-engined aircraft. Instead we allow in our assumptions for some migration to aircraft in other aircraft 

categories. Specifically, we assume that over time 747-400 activity from our baseline year of 2010 will 

be replaced with ASKs delivered on a variety of aircraft including the A380, B777, B777X, A350 XWB, 

and perhaps others. 

We cannot predict what the mix between those aircraft types will be, nor does SA have a position 

concerning the relative fuel efficiency of large twin-engined aircraft versus very large 4-engined 

                                                      
187

  http://www.boeing.com/commercial/777/#/design-highlights/unmatched-capabilities/profitability/fuel-efficiency/, viewed 12
th
 

Sept 2016 
188

  Source: OAG, plus data from Heathrow, Gatwick and Manchester airports 
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aircraft. As a result, we conservatively assume a fuel-efficiency improvement of 25% arising from 

migration of B747-400 activity to a mix of primarily “imminent” aircraft types. 

A380 

A380 aircraft within the baseline (year 2010) fleet represent the first examples of “imminent” aircraft 

types entering the fleet. As a result, these aircraft will not be displaced during the “baseline” to 

“imminent” fleet transition and so no fuel-efficiency improvement is assumed relative to these aircraft. 

Other 

We do not take account of any fuel-efficiency improvements in this category associated with the 

transition from “baseline” to “imminent” aircraft types. This is a very conservative assumption but, due 

to the very low materiality of this category, the error it introduces is tiny. 

Summary 

Table 5 in the main text summarises the above discussion. 
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APPENDIX F – Deriving “Future” Aircraft Assumptions 

In this appendix, which relates to section 4.7 of the main text, we follow the approach set out in 

section 4.6 in order to derive assumptions for the fuel-efficiency and entry into service dates of 

“future” aircraft in each of the four aircraft size categories used in our Road-Map model. These 

assumptions are then sense-checked and placed into context in APPENDIX G. 

Step 1 – Definition of Prototypical Reference Aircraft 

Table 19 shows the characteristics of our “reference” aircraft for each of the four aircraft categories. 

Each of the four “reference” aircraft is intended to be an average of the corresponding types entering 

service in the years immediately prior to 2000. 

 

Aircraft 

Category 

Candidates (new aircraft in 2000) 

aircraft type (EIS-date) 

“Reference” Aircraft 

EIS Fuel-Burn per ASK
189

 

NB A320 (1988), 737-800
190

 (1998) 1993 100% 

SMTA 767-200 (1984), 767-300 (1988), 767-400 (2000) 

A330-200 (1999), A330-300 (1995) 
1993 100% 

LTA 777-200 (1995) 1995 100% 

VL 747-400 (1989) 1989 100% 

Table 19 – “reference” aircraft characteristics derived from typical new aircraft in 

2000 

Step 2 – Definition of Representative “Imminent” Aircraft 

 NB - From APPENDIX D, the Airbus A320neo offers 21% fuel-efficiency improvement relative 

to the A320ceo, the Boeing 737 MAX offers 14% relative to recent 737 NGs and 20% relative 

to early 737 NGs (without retrofitted winglets), while the 737 MAX 200 offers 20% relative to 

the latest 737 NGs. Hence the 737 MAX 200 offers some 26% improvement relative to early 

737 NGs which, along with the A320, are relevant for our “reference” aircraft. Assuming that 

the MAX 200 accounts for around one third of the “imminent” 737 fleet
191

, then the average 

fuel-burn saving from early 737 NGs to a mixture of 737 MAX and MAX 200 aircraft is around 

22%
192

. Combining this with the A320’s 21% saving (and assuming an equal weighting of the 

two aircraft families) gives an average fuel saving of around 21.5%. Averaging the EIS dates 

of the 3 aircraft types gives an EIS for our representative “imminent” aircraft of 2017. 

 SMTA – for fuel-efficiency improvement we can simply use the figure of 17.3% from 

APPENDIX E and Table 5, since that figure was derived without specific reference to the 

2010 fleet composition. For EIS of our representative “imminent” aircraft we average the 

A330neo (2017) with the 787 (2011) and a small component
193

 of the 787-10 (2018) to give 

2015. 

                                                      
189

  100%, by definition of the “reference” aircraft 
190

  Without winglets 
191

  consistent with our assumption in APPENDIX E 
192

  Note that this is a little larger than the 20.4% we derived relative to the baseline (year 2010) fleet in APPENDIX E, This is 

because our “reference” aircraft is an early 737 NG without winglets, i.e. the “typical new aircraft of year 2000” in this 

category, while the baseline fleet comprises a large percentage of recent-model 737 NGs as well as early 737 NGs that 

have been retrofitted with winglets (both types being more fuel efficient than the “reference” aircraft), along with a small 

percentage of 737 Classics (less efficient than the “reference” aircraft). 
193

  As discussed in APPENDIX E, the 787-10 currently accounts for only a small proportion of the total 787 order-book. Hence 

its weighting in the averaging performed here is small. 
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 LTA – From APPENDIX E and Table 5, we have a 25% improvement from our “reference” 

aircraft to the representative “imminent” aircraft. For EIS we average those of the A350 XWB 

(2015) and the B777X (2019) to give 2017. 

 VL – from APPENDIX E and Table 5 our representative “imminent” aircraft offers a 25% 

improvement over the “reference” aircraft in this category. A suitable EIS date takes into 

account those of the A380, A350 XWB and B777X – we choose 2013 as an average 

Table 20 summarises the above. 

 

Aircraft 

Category 

Candidates (“imminent” aircraft) 

aircraft type (EIS-date) 

Representative “imminent” 

aircraft 

EIS Fuel-Burn per ASK
194

 

NB A320neo (2015), 737 MAX (2017), 737 MAX 

200(2019) 
2017 78.5% 

SMTA A330neo (2017), 787-8 (2011), 787-10 (2018) 

 
2015 82.7% 

LTA A350 XWB (2015), 777X (2019) 2017 75% 

VL A380 (2007), A350 XWB (2015), B777X (2019) 2013 75% 

Table 20 – representative “imminent” aircraft characteristics 

Step 3 – Bounding the Space of Likely options 

Regarding potential EIS dates, we have made the following assumptions 

 NB - the substantial market success of both the Airbus A320neo family and the Boeing 737 

MAX family means that we now consider it unlikely that a successor aircraft will appear before 

2030. We consider it unlikely that a successor aircraft would remain unavailable beyond 2040. 

 SMTA - we judge that the 2030s is the most likely period within which a new aircraft will 

appear, given the EIS dates of the all-new Boeing 787 (2011) and the re-engined A330neo 

(2017). 

 LTA – given EIS dates spanning 2015-2019 for “imminent” aircraft in this category, it again 

seems unlikely that an all-new aircraft will appear before 2030. However, the continued 

absence beyond 2040 of a successor aircraft in this category is not consistent with past 

experience of inter-generational periods. 

 VL - in this category we assume that a new aircraft will emerge in the period 2035 to 2045. 

Regarding worst-case fuel-efficiency improvements, in most aircraft categories we assume a default 

threshold of acceptability of 20%, based on observations of the extent to which successive 

generations of aircraft typically improve upon their predecessors. However, in the NB category we 

consider that a 15% improvement might be viewed as sufficient to allow the launching of a new aircraft 

model. 

We can then simply follow the method set out for step 3b in section 4.6.3 above to establish our best-

case fuel-efficiency assumptions corresponding to the “earlier” and “later” EIS dates. 

Table 21 summarises the outcome of this step. 

                                                      
194

  Relative to that of the corresponding “reference” aircraft which is 100% by definition 
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Category 

EIS dates 

Fuel-Efficiency Improvement 

% vs representative 

“imminent” aircraft 

Fuel-Burn per ASK vs 

“reference” aircraft
195 

Earlier Later Worst 
Best-

Earlier 

Best-

Later 
Worst 

Best-

Earlier 

Best-

Later 

NB 2030 2040 15 40.7% 51.8% 66.7% 46.6% 37.9% 

SMTA 2030 2040 20 43.7% 54.2% 66.2% 46.6% 37.9% 

LTA 2030 2040 20 36.8% 49.0% 60% 47.4% 38.3% 

VL 2035 2045 20 45.4% 55.0% 60% 41.0% 33.7% 

Table 21 – extreme-case assumptions for “future” aircraft, collectively forming 

the corners of regions providing context for the central case assumptions used 

within the Road-Map. 

Step 4 – EIS Dates and Fleet Transition Periods 

We choose EIS dates, shown in Table 22, corresponding to the half-way point between the “earlier” 

and “later” scenarios identified immediately above.  

Fleet transition periods are taken as being 25 years in the NB category and 20 years in the remaining 

categories, for reasons explained in Appendix A of our 2012 Road-Map [SA, 2012]. 

Step 5 – Fuel-Efficiency Improvement Assumptions 

In this step we define our “central” case assumptions which will be used as input to the Road-Map 

model in determining the impact upon UK aviation CO2 of the “future” generation of aircraft. 

As with our 2012 Road-Map, we assume an underlying rate of improvement in fuel-efficiency between 

aircraft generations of 1.3% each year. We supplement this with a “step-change” improvement 

element intended to capture the deployment of a combination of one or more significant new 

technologies and/or design configurations such as those described in section 4.10 above. The size of 

the supplemental step-change is assumed to be 10% (NB) or 15% (SMTA, LTA and VL). 

These assumptions lead us to define our central case for future aircraft types as shown in Table 22. 

 

Category EIS 

Central case: 

Fuel-efficiency % improvement vs… Central case: 

Fuel-burn per ASK vs 

“reference” aircraft …representative 

“imminent” aircraft 

…“reference” 

aircraft 

NB 2035 28.9 44.2 55.8% 

SMTA 2035 34.6 45.9 54.1% 

LTA 2035 32.8 49.6 50.4% 

VL 2040 40.3 55.2 44.8% 

Table 22 – characteristics of “future” aircraft (central case) used in the Road-Map 

model. This table is repeated as Table 8 in section 4.7 of the main text 

                                                      
195

 `Note that this equals 100% minus (fuel efficiency improvement relative to “reference” aircraft). Its value determines the 

vertical height of the corners of the bounding boxes in Figure 19 to Figure 22. 
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APPENDIX G – “Future” Aircraft Assumptions: Sense-Check 

This appendix relates to section 4.8 of the main text. 

In Figure 19 through to Figure 22 we illustrate our central case assumptions in the context of the 

“worst” and “best” cases defined above, and where possible, with reference to the NASA technology 

targets (N+2, N+3) for civil aircraft (described in section 4.2.5). In the charts we use the abbreviation 

G0 to refer to the “reference” aircraft, G1 to mean the representative “imminent” aircraft, and G2 to 

refer to the various options for the “future” aircraft. 

In the case of the NASA technology targets, which refer to a target of TRL 4-6, we have assumed a 

lag of 8 years between achieving that TRL and the entry into service of an aircraft achieving a similar 

level of fuel-efficiency. 

In each of the charts, we show an extrapolation of the rate of improvement in fuel-efficiency observed 

between the “reference” aircraft and the representative “imminent” aircraft (blue crosses), as well as a 

curve representing a constant rate of improvement of 1.3% per annum from the representative 

“imminent” aircraft (red dots). These set the context for the worst case and central case assumptions. 

 Figure 19 shows for narrow-body (NB) aircraft the central case we use in our Road-Map, 

along with the bounding box of best/worst cases described above. It is clear that the level of 

ambition of our central case is substantially less optimistic than either an aircraft based on the 

NASA N+3 goal, or the “best-earlier” and “best-later” cases derived with reference to the 

ACARE FlightPath2050 goal. Note also that in the NB category, the representative “imminent” 

aircraft
196

 is a re-engined variant of the “reference” aircraft
197

, and so a corresponding “future” 

aircraft would be able to benefit not only from a further generation of engine technology but 

also from two generations of airframe and aircraft systems technologies and/or design 

configurations. For this reason, it is to be expected that our central case is substantially more 

ambitious than a simple extrapolation of the rate of progress observed from “reference” to 

representative “imminent” aircraft. 

 

Figure 19 – narrow-body (NB) aircraft central-case assumptions regarding EIS 

date and fuel-efficiency, shown in the context of 1) previous generations of 

aircraft in the same size category and 2) best/worst case possibilities. 

                                                      
196

  A representation of the average characteristics of the A320neo / 737 MAX 
197

  A representation of the average characteristics of the A320ceo / 737 NG 
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 Figure 20 shows the corresponding chart for small/medium twin-aisle (SMTA) aircraft. As 

with our NB category, the central case is more ambitious than a simple extrapolation of recent 

observed rates of progress (which takes account of the fact that at least one of the 

contributing aircraft types was a re-engined aircraft), but very much less ambitious than the 

“best-earlier” or “best-later” cases derived with reference to the ACARE FlightPath2050 goal. 

 

Figure 20 – small/medium twin aisle (SMTA) aircraft central-case assumptions 

regarding EIS date and fuel-efficiency, shown in the context of 1) previous 

generations of aircraft in the same size category and 2) best/worst case 

possibilities. 

 Figure 21 shows the corresponding chart for large twin-aisle (LTA) aircraft. Here the rate of 

improvement between “reference” and representative “imminent” aircraft is a little higher than 

in the NB and SMTA categories. Our central case lies approximately mid-way between on the 

one hand an extrapolation of that rate and on the other hand the best-case targets derived 

with reference to the FlightPath2050 goal.  

 

Figure 21 – large twin-aisle (LTA) aircraft central-case assumptions regarding EIS 

date and fuel-efficiency, shown in the context of 1) previous generations of 

aircraft in the same size category and 2) best/worst case possibilities. 
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 Finally, Figure 22 shows the corresponding chart for very-large (VL) aircraft. In this category 

the time period between EIS of the representative “imminent” aircraft and assumed EIS of our 

central case “future” aircraft is substantially longer than for the other categories
198

. As a result 

the worst-earlier and worst-later cases
199

 fall substantially above the extrapolation curve and 

the 1.3% per annum curve. Our central case lies approximately mid-way between the 1.3% 

p.a. curve and the “best-earlier” / “best-later” cases defined with regard to the Flightpath 2050 

goal. 

 

Figure 22 – very large (VL) aircraft central-case assumptions regarding EIS date 

and fuel-efficiency, shown in the context of 1) previous generations of aircraft in 

the same size category and 2) best/worst case possibilities. 

From the above charts, we conclude that our central case assumptions for “future” aircraft fuel-

efficiency are challenging compared with the rates of improvement observed between the “reference” 

aircraft and representative “imminent” aircraft. Nonetheless they fall far short of the rates of 

improvement that would be required to produce aircraft characterised by fuel-efficiencies consistent 

with the NASA N+2/N+3 goals or with steady progress towards the FlightPath2050 goal.  

Furthermore, [ICCT, 2016] takes the view that “the fuel consumption of new aircraft can be reduced by 

approximately 25% in 2024 and 40% in 2034 compared with today’s aircraft by deploying emerging 

cost-effective technologies. The latter value….may be conservative because of the modeling 

assumptions used and the exclusion of non-conventional airframes like blended wing body or strut-

based wings.” 

Our assumptions (set out in Table 8) for new aircraft fuel-efficiency in 2035-2040, relative to our 

“reference” aircraft, involve higher percentage savings than those suggested by [ICCT, 2016], but we 

do not exclude non-conventional airframe configurations. 

In section 4.10 we explore the upcoming technologies which may contribute towards enabling these 

assumed levels of fuel-efficiency to become reality. 

 

                                                      
198

  27 years (VL) vs 18-20 years (NB, SMTA, LTA) 
199

  Which - as with the SMTA and LTA categories - are based on a 20% fuel-efficiency improvement of the “future” aircraft 

relative to the corresponding representative “imminent” aircraft 
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